fusion research in ioffe institute
play

Fusion Research in Ioffe Institute L.G.Askinazi On behalf of FT-2, - PowerPoint PPT Presentation

Fusion Research in Ioffe Institute L.G.Askinazi On behalf of FT-2, Globus-M, TUMAN-3M, Diagnostics and Theory Teams Ioffe Institute, St. Petersburg, Russia Russian and International Collaborators A.A. Baikov Institute of Metallurgy and


  1. Fusion Research in Ioffe Institute L.G.Askinazi On behalf of FT-2, Globus-M, TUMAN-3M, Diagnostics and Theory Teams Ioffe Institute, St. Petersburg, Russia Russian and International Collaborators A.A. Baikov Institute of Metallurgy and Materials Science, RAS, Moscow, Russia D.V. Efremov Institute of Electrophysical Apparatus, St. Petersburg, Russia Euratom-Tekes Association, Aalto University, Espoo, Finland A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Moscow, Russia NRC “Kurchatov Institute”, Moscow, Russia Max-Planck Institute for Plasma Physics, Greifswald, Germany Ioffe Fusion Technologies Ltd, St. Petersburg, Russia IJL, Universite Henri Poincaré, Vandoeuvre, France Institute of Plasmas and Nuclear Fusion, IST, Lisbon, Portugal IPP NSC KIPT, Kharkov, Ukraine Joint-Stock Company "INTEHMASH", St. Petersburg, Russia 1 KTH Royal Institute of Technology, Stokholm, Sweden Saint Petersburg State Polytechnical University, St. Petersburg, Russia

  2. Outline •Fusion Research in Ioffe: Directions and Structure •Tokamak Plasma Physics: –LH Current drive (FT-2 and Globus-M) –NBI, Fast particles and Alfven waves physics (Globus-M and TUMAN-3M) in support of Globus-M2 project –GAM studies: turbulence, GAM and transport interplay (FT-2, Globus-M and TUMAN-3M) •Plasma Theory •Diagnostics for ITER 2/24

  3. Fusion Research in Ioffe Institute: Directions and Structure Fusion research in Ioffe Institute is being conducted in two major fields: • Basic high temperature plasma physics, both experimental and theoretical: – Wave propagation in toroidal plasmas – Energetic ion physics – Plasma turbulence characterization and its interplay with confinement • Reactor oriented studies: – Development of tokamak plasma diagnostics, including three contracts with ITER IO – Research in support of neutron source based on spherical tokamak concept 3/24

  4. Tokamak Plasma Physics Tokamak experiments Limiter Auxiliary A R, m a, m Shaping or Heating and B t , T I p , kA Divertor CD (MW) NBI (1.0), b/a= 2.0 Globus-M 1.5 0.36 0.24 0.4 250 divertor ICRH (1.0),  ≤ 0.5 LHCD (0.5) TUMAN-3M 2.4 0.53 0.22 1.0 190 circular limiter NBI (0.6) FT-2 7 0.55 0.08 2.3 35 circular limiter LHCD, LHH (0.3) Globus-M TUMAN-3M FT-2 4/24

  5. Tokamak Plasma Physics Globus-M upgrade: Globus-M2 project Limiter Auxiliary R, a, B t , I p , A Shaping or Heating and m m T kA Divertor CD NBI (1.0), b/a= 2.0 Globus-M2 1.5 0.36 0.24 1.0 500 divertor ICRH (1.0),  ≤ 0.5 LHCD (0.5) 5/24

  6. LH Current Drive Experiments: FT-2 and Globus-M • FT-2 : High B t =2.3 T and moderate density → traditional toroidal grill is used (f=920MHz) – LHCD efficiency  CD  0.4·10 19 AW -1 m -2 – Mechanisms of LHCD offset at high density is studied (density limit) – LHCD density limit is just slightly higher in D than in H H D D 2 LHCD LH H 2 D 2 , P RF =75kW 0.6 3.0 H 2 , P RF =100kW density resonance 0.5 2.5 -1 limit, density, -2 W -3 19 m 0.4 2.0 10 19 m -3 10 19 m -3 19 Am F cx /(dF cx /dn, 10 0.3 1.5 Hydrogen 3.5 3.5  CD  0.2 1.0 0.1 0.5 Deuterium 4.0 10 0.0 0.0 1 2 3 4 5 6 n DL 19 m -3 <n e > , 10 • Most probable explanation – Parametric Decay Instability of pumping wave and peripheral absorption of daughter wave EX/P1-29 , S. Lashkul 6/24

  7. LH Current Drive Experiments: FT-2 and Globus-M • Globus-M : Low B t =0.4T and high density → high N || > 7-10 needed, but toroidal slowing down is inapplicable • Alternative approach proposed and validated: LH waves (f=2.45GHz) with N pol ~ N || ~ 3 are launched in poloidal direction, gradually accumulate higher N || and are absorbed in a vicinity of poloidal resonance 200.0 Plasma current (kA) 150.0 100.0 50.0 0.0 2.4 Loop voltage (V) 2.3 2.2 2.1 2.0 1.9 1.8 500.0 LH power (a.u.) 250.0 0.0 150 160 170 180 Time (ms) • RF up to 30 kA (twice as high as predicted by modeling) LHCD efficiency  CD  0,25·10 19 AW -1 m -2 • TH/P1-34 , V. Dyachenko 7/24

  8. NBI, Fast particles and Alfven waves physics: Globus-M and TUMAN-3M • Neutron production in beam-plasma D-D reactions       5 0 . 36 1 . 29 1 . 34 4 . 69 R 6 10 n B I E (10 19 m -3 , T, MA, keV) n t P b e 14 10 TUMAN-3M Globus-M TUMAN-3M Globus-M 12 10 -1 R n , s Valid for the range: n e > 2·10 19 m -3 10 10 I P > 140 kA E b < 26 keV(G) E b < 22 keV(T) 8 Single NBI box 10 8 10 12 14 10 10 10 10 5 *n e 0.36 *B t 1.29 *I P 1.34 *E b 4.69 6*10 8/24

  9. NBI, Fast particles and Alfven waves physics: Globus-M and TUMAN-3M • Neutron production in beam-plasma D-D reactions       5 0 . 36 1 . 29 1 . 34 4 . 69 R 6 10 n B I E (10 19 m -3 , T, MA, keV) n t P b e 14 ×100 increase 10 TUMAN-3M in neutron rare Globus-M Globus-M2 is predicted for 12 10 Globus-M2 -1 R n , s B t =1T 10 I p =500 kA 10 E b =60 keV P b =1 MW 8 10 8 10 12 14 10 10 10 10 5 *n e 0.36 *B t 1.29 *I P 1.34 *E b 4.69 6*10 9/24

  10. Globus-M2 status Globus-M Upgrade (Globus-M2 Project) is on the way: first plasma is awaited in 2016 "t-max" "B-max" Globus-M2 regime regime Plasma major / 0.36 / 0.24 m 0.36 / 0.24 m minor radius Toroidal Field 1.0 T 0.7 T Plasma Current 0.5 MA 0.5 MA TF flattop 0.4 s 0.7 s Basic regime Inductive / CD Inductive / CD TF field ripple  0.4%  0.4% at R = 0.6 m  The manufacturing of a new magnetic system was successfully started  Special conductors for the TF and PF magnets have been manufactured and delivered to the Ioffe Institute OV/P-04 , V. Gusev  New power supplies is under development FIP/P8-25 , V. Minaev 10/24

  11. NBI, Fast Ions and Alfven waves physics: Globus-M and TUMAN-3M • Fast Ions confinement in Globus-M and TUMAN-3M : plausible effect of inward shift  R of plasma column TUMAN-3M Globus-M 6 -1 4 10 s 28 n , 10 2 26 R 0 24 2 ,6 2 ,8 3 ,0 3 ,2 3 ,4 R n , a.u. 4 < o u t in > 22 n , ms 3 20 2 18  1 1,5 2,0 2,5 3,0 3,5 4,0 <out in> 0  R (cm) 2 ,6 2 ,8 3 ,0 3 ,2 3 ,4 < o u t in >  R , c m EX/P1-33 , N. Bakharev EX/P6-58 , V. Kornev 11/24

  12. NBI, Fast Ions and Alfven waves physics: Globus-M and TUMAN-3M • In Globus-M Alfven • In TUMAN-3M Alfven eigenmodes eigenmodes cause additional observed in Ohmic regime without FI 1200 losses of FI 1100 138 139 140 141 1000 1.7 900 13 *cm -3 ) <n e > (10 frequency, kHz 800 1.6 700 1.5 600 f ~ 0.9-1MHz 1.4 500 400 V A =B t (  0 n i m i ) -0.5 MHD signal (a.u.) 300 1.9 200 100 0.0 0 40 42 44 46 48 50 52 54 56 58 60 62 64 -1.9 time, ms 1,5 140 neutron rate (a.u.) f, MHz 112 84 1,0 56 NPA E=27 keV (a.u.) 800 0,5 600 400 0,0 200 0,0 0,5 1,0 1,5 138 139 140 141 -0.5 ~B t n EX/P6-57 , M. Vildjunas EX/P1-33 , N. Bakharev 12/24

  13. GAM studies: turbulence, GAM and transport interplay (FT-2, Globus-M and TUMAN-3M) • Poloidal inhomogeneity of turbulence measured for the first time in the FT-2 tokamak by Radial Correlation Doppler Reflectometry and calculated by full-f gyrokinetic code ELMFIRE (Aalto University, Espoo, Finland) Elmfire f t [80;160] (kHz) 0,55 measured by RCDR, f t [60;200] (kHz) 0,50 0,45 0,40 l r (cm) 0,35 0,30 0,25 0,20 0,15 120 180 240 300 360 420 poloidal angle  (degree) EX/P1-30, A. Altukhov 13/24

  14. GAM studies: turbulence, GAM and transport interplay (FT-2, Globus-M and TUMAN-3M) • On FT-2, turbulence level modulation at GAM D E r (a.u.) 2 frequency observed experimentally for the first H 0 time, using Doppler ES and reflectometry P turb (a.u.) 2 • Anti-correlation of the GAM amplitude and the effective electron thermal diffusivity observed on 0 the on FT-2 experimentally and in modeling 0.4 coherence 0.2 2 /s) 0.0  e (m 340 ↑ 0 100 200 300 320 GAM F (kHz) 1.0 300 t (mks) 1.6 GAM ampl 280 30 D 2.2 20 260 H 10 2.8 240 noise 0 220 3.4 200 4.0 2 /s) 6 H 3 4 5 6 7  eff (m r (cm) ELMFIRE code 3 D (Aalto University, Espoo, Finland) 4 5 6 EX/11-2Ra , A. Gurchenko r (cm) 14/24

  15. GAM studies: turbulence, GAM and transport interplay (FT-2, Globus-M and TUMAN-3M) • GAM radial profile was studied using Doppler reflectometry (DR) on Globus-M and TUMAN-3M in cooperation with SPbSTU − by shot-to-shot spatial scan with single tunable frequency on Globus-M − by two-frequency DR on TUMAN-3M • In both cases, GAM location1-2cm inside LCFS is concluded, with approx. constant frequency throughout the localization region 5 70 DR E r 0,08 sep. 60 a 4 LP E r 0,04 50 V ExB , km/s f GAM , kHz 0,00 3 40 Sp(f), a.u. 0,08 MP B 30 2 f GAM = 30.5 kHz 0,04 20 1 0,00 10 I sat 0 0,04 600 f GAM =22.4 kHz (deuterium) b f GAM =38 kHz (hydrogen) T e , eV 400 0,00 D 200  0,02 0 0,00 0,46 0,48 0,50 0,52 0,54 0,56 0,58 0,60 0,62 10 100 R, m f, kHz • On Globus-M, the evident correlation between the GAM oscillations of rotational velocity, D α emission, peripheral plasma density and polidal magnetic field oscillations was observed EX/P1-32 , V. Bulanin 15/24

Recommend


More recommend