functional brain imaging multi objective optimisation and
play

Functional Brain Imaging, Multi-Objective Optimisation and - PowerPoint PPT Presentation

Functional Brain Imaging, Multi-Objective Optimisation and Spatio-Temporal Data Mining Michle Sebag TAO, Universit Paris-Sud With Nicolas Tarrisson, Olivier Teytaud, Vojtech Krmicek, UPS Julien Lefevre, Sylvain Baillet, La


  1. Functional Brain Imaging, Multi-Objective Optimisation and Spatio-Temporal Data Mining Michèle Sebag TAO, Université Paris-Sud With Nicolas Tarrisson, Olivier Teytaud, Vojtech Krmicek, UPS Julien Lefevre, Sylvain Baillet, La Pitié-Salpétrière

  2. Motivations Functional Brain Imagery ✎ Patients, Experiments, Measures ✎ Magneto-Encephalography 1,000 measures per sensor per second.

  3. The data Spatio-temporal structure ✎ Sensors ✐ ❂ ✶ ✿✿◆ ✚ ❘ ✸ ▼ ✐ ❂ ✭ ① ✐ ❀ ② ✐ ❀ ③ ✐ ✮ ✷ ■ ✎ ✐ ✦ ❘ ❚ ❢ ❈ ✐ ❬ t ❪ ❀ t ❂ ✶ ✿✿❚ ❣ ✷ ■

  4. Overview ✎ Spatio-temporal Data Mining ✎ Multi-Objective Optimisation ✎ .. + Multi-modal Optimisation ✎ 4dMiner & Experimental Validation ✎ Discriminant Spatio-Temporal Patterns

  5. Goal Find spatio-temporal patterns ❘ ✸ ✎ Spatial region ❆ ✚ ■ ✎ Temporal interval ■ ✚ ❢ ✶ ✿✿❚ ❣ defining ❱ ✭ ❆❀ ■ ✮ ❂ ❢ ❈ ❦ ❬ t ❪ ❀ ❦ ✷ ❆❀ t ✷ ■ ❣ SUCH THAT the variance of signals within ❱ ✭ ❆❀ ■ ✮ is low and ❆ ✂ ■ is a large spatio-temporal region “active areas of the brain”

  6. Position of the problem In practice: done manually ✎ tedious ✎ non reproducible Standard approach ✶ ❂ Extract a global spatio-temporal model Independent Component Analysis Hyvarinen et al., 2001 EM-based clustering of curves Chudova et al., 2003 Markov Random Field McCallum, 2004 or, Inductive Database Mannila et al., 1997 ✷ ❂ Find specific spatio-temporal patterns from the global model 99.9 of the global model learned is useless

  7. Data Mining Goal ✎ From massive amounts of data and knowledge ✎ find novel, useful and valid knowledge Vision Ideally pervasive knowledge Actually specialized expertise The need [human] knowledge management does not scale up The opportunity huge amounts of accessible data

  8. Discussion Goals ✎ subjective (novel & useful knowledge) ✎ multi-objective (valid = precise or general ?) Requirements ✎ Scalability ✎ Flexibility ✦ tunable ✦ calibrated ✦ computational cost must be controllable any-time algorithm Zilberstein 98

  9. MEG Mining: Multi-objective optimisation Search space: Stable Spatio-Temporal Patterns ✽ ■ ❂ ❬ t ✶ ❀ t ✷ ❪ ❃ temporal interval ❁ ✐ center of the spatial region ❳ ❂ r ❃ ✿ radius of the spatial region ❞ ✇ ❂ ✭ ❛❀ ❜❀ ❝ ✮ distance weights ellipsoidal regions Objectives ✎ Temporal length ❵ ✭ ❳ ✮ ❂ t ✷ � t ✶ ✎ Spatial area ❛ ✭ ❳ ✮ ❂ ❥❱ ✭ ❳ ✮ ❥ ❂ ❥❢ ❥ ❂ ❞ ✇ ✭ ✐❀ ❥ ✮ ❁ r ❣❥ ✎ Spatio-temporal alignment ❳ ✶ ✛ ✭ ❳ ✮ ❂ ✛ ■ ✭ ✐❀ ❥ ✮ ❵ ✭ ❳ ✮ ✂ ❛ ✭ ❳ ✮ ❥ ✷❱ ✭ ❳ ✮

  10. ✛ ■ ✭ ✐❀ ❥ ✮ : I-alignment of sensors ✐ and ❥ ✏ ✑ ❥ ✖ ✐ � ✖ ❈ ■ ❈ ■ ❥ ❥ ✛ ■ ✭ ✐❀ ❥ ✮ ❂ ❁ ✐❀ ❥ ❃ ■ ✂ ✶ � ❥ ✖ ❈ ■ ✐ ❥ with t ❂ t ✶ ❈ ✐ ✭ t ✮ ✿❈ ❥ ✭ t ✮ P t ✷ ❁ ✐❀ ❥ ❃ ■ ❂ t ❂ t ✶ ❈ ✐ ✭ t ✮ ✷ ✂ P t ✷ qP t ✷ t ❂ t ✶ ❈ ❥ ✭ t ✮ ✷ ❈ ■ ✖ ❥ ❂ Average ❢ ❈ ❥ ❬ t ❪ ❀ t ✷ ■ ❣

  11. Multi-objective Optimisation Find ❆r❣▼❛① ❢❋ ✐ ❀ ✐ ❂ ✶ ❀ ✷ ✿✿✿❀ ❋ ✐ ✿ ✡ ✦ ■ ❘ ❣ ✚ Pareto domination ✽ ✐❀ ❋ ✐ ✭ ① ✮ ✔ ❋ ✐ ✭ ② ✮ ✎ ① ❁ ② iff ✾ ✐ ✵ ❋ ✐ ✵ ✭ ① ✮ ❁ ❋ ✐ ✵ ✭ ② ✮ Pareto Front ✎ Set of non dominated solutions. objects with highest quality and smallest cost... Pareto front Quality Cost

  12. An Any-time Approach Spatio-temporal data mining ✎ Monotonous criteria (variance increases with ■ and ❆ ) ✎ Antagonistic criteria (decrease ■ or ❆ to keep the variance low) Complete vs Stochastic Search ✎ For experts to look at ✎ Agregate the results of several runs Multi-Objective Evolutionary Computation Kalyan Deb 2001

  13. ☞ ✎ ✍ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✍ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✍ ✍ ✎ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✎ ✎ ✍ ✑ ✏ ✏ ✏ ✏ ✏ ✏ ✑ ✑ ✏ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✏ ✏ ✎ ✏ ✎ ✎ ✎ ✎ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✍ ✌ ✑ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ✌ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✑ ✑ ☞ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✔ ✔ ✕ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕ ✕ ✔ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✔ ✔ ✑ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✓ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✓ ✓ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✓ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ☞ ☞ ☞ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ☎ ☎ ✄ ✝ ✆ ✆ ✝ ✝ ✝ ✝ ✝ ✝ ✆ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✆ ✆ ☎ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✄ ✄ ✝ ✁ � � ✁ ✁ ✁ ✁ ✁ ✁ � ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ � � ✁ � � � � � � � � � � � � � � � � � � � ✁ ✁ ✄ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✄ ✄ ✂ ✂ ✁ ✂ ✁ ✁ ✁ ✁ ✁ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✝ ✝ ✝ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✡ ✡ ✡ ✡ ✡ ✡ ✠ ✠ ✡ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✡ ✡ ✠ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☞ ☛ ☛ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ☛ ✡ ✡ ✡ ✡ ☛ ☛ ☛ ☛ ✠ ✠ ✠ ✟ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✟ ✞ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✞ ✞ ✟ ✞ ✝ ✝ ✝ ✝ ✝ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✠ ✟ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✕ Mutation, ... Crossover, Selection Genitors Evolutionary Computation, the skeletton Best individual Offspring Generation Stop ? ❘ ❋ ✿ ✡ ✼✦ ■ Evaluation Replacement Parents Initialisation Evaluation

  14. Multi-objective evolutionary optimisation Find ❆r❣❖♣t ✭ ❋ ✮ Standard EC ✎ Initialisation ✎ Selection ✎ Variation (crossover, mutation) Find ❆r❣❖♣t ❢ ❵ ✭ ❳ ✮ ❀ ❛ ✭ ❳ ✮ ❀ ✛ ✭ ❳ ✮ ❣ Multi-objective EC Differences Goal: sample the Pareto front Archive Selection after ❋ ✵ ✭ ❳ ✮ , measuring: The Pareto rank of ❳ in the current population The percentage of the archive dominated by ❳ ...

  15. 4d Miner: Multi-Objective Evolutionary Algorithm Components ◆ ✸ ✂ ■ ❘ ✹ ✎ Search space ✡ ✒ ■ ❘ ✸ ❣ ❢ ❳ ❂ ✭ ■❀ ✐❀ r❀ ✇ ✮ ❀ ■ ✚ ❬✶ ❀ ❚ ❪ ❀ ✐ ✷ ❬✶ ❀ ◆ ❪ ❀ r ✷ ■ ❘ ❀ ✇ ✷ ■ ✎ Objectives ❛❀ ❵❀ ✛ ✎ Operators – Initialisation sampling mechanism average interval length minimal acceptable alignement minimal pattern size – Variation operators

  16. Sampling mechanism ❳ ❂ ✭ ✐❀ ✇❀ ■❀ r ✮ Daida 1999 ✎ ✐ : uniformly drawn in ❬✶ ❀ ◆ ❪ ; ✎ ✇ ❂ ✭✶ ❀ ✶ ❀ ✶✮ initial = Euclidean ✎ ■ ❂ – t ✶ : uniformly drawn in ❬✶ ❀ ❚ ❪ – ❵ ✭ ■ ✮ drawn ✘ ◆ ✭ ♠✐♥ ❵ ❀ ♠✐♥ ❵ ❂ ✶✵✮ ♠✐♥ ❵ user supplied – reject if t ✶ ✰ ❵ ✭ ■ ✮ ❃ ❚ ✎ r : such that the ball contains all neighbors with bounded ■ - ♠✐♥ ✛ user-supplied alignment: r ❂ ♠✐♥ ❦ ❢ ❞ ✇ ✭ ✐❀ ❦ ✮ s✿t✿ ✛ ■ ✐❀❦ ❃ ♠✐♥ ✛ ✮ ❣ ✎ reject if ❛ ✭ ❳ ✮ ❂ ❥❇ ✭ ✐❀ r ✮ ❥ ❁ ♠✐♥ ❛ ♠✐♥ ❛ user supplied Complexity: ❖ ✭ ◆ ❧♦❣ ◆ ✂ ♠✐♥ ❵ ✮

  17. First results: Failure! Diversity of stable spatio temporal patterns ✎ seems OK... + Variance Pareto front + + + + + Spatio−temporal width ...but all patterns represent the same spatio-temporal region... Failure analysis ✎ Experts are not interested in the Pareto front only. ✎ ... but in ALL active areas of the brain...

Recommend


More recommend