frontiers in quantum matter symmetry topology strong
play

Frontiers in Quantum Matter Symmetry, Topology & Strong - PowerPoint PPT Presentation

International Conference on Quantum Fluids and Solids, University of Tokyo, July 25, 2018 Frontiers in Quantum Matter Symmetry, Topology & Strong Correlation Physics J. A. Sauls Northwestern University Wave Ngampruetikorn Takeshi


  1. International Conference on Quantum Fluids and Solids, University of Tokyo, July 25, 2018 Frontiers in Quantum Matter Symmetry, Topology & Strong Correlation Physics J. A. Sauls Northwestern University • Wave Ngampruetikorn • Takeshi Mizushima • Robert Regan • Oleksii Shevtsov • Joshua Wiman ◮ Strong Correlation Physics in 3 He ◮ Chiral Fermions & Anomalous Hall Transport ◮ Low Temperature Physics at 10 8 Kelvin ◮ Quanta of a Superfluid Vacuum ◮ Supported by National Science Foundation Grant DMR-1508730

  2. Chiral Quantum Matter Molecular Chiral Enantiomers Handedness: Broken Mirror Symmetry

  3. Chiral Quantum Matter Chiral Diatomic Molecules Molecular Chiral Enantiomers Ψ( r ) = f ( r ) ( x + iy ) Mirror Broken Mirror Symmetries Π zx Ψ( r ) = f ( r ) ( x − iy ) Handedness: Broken Mirror Symmetry

  4. Chiral Quantum Matter Chiral Diatomic Molecules Molecular Chiral Enantiomers Ψ( r ) = f ( r ) ( x + iy ) Mirror Broken Mirror Symmetries Π zx Ψ( r ) = f ( r ) ( x − iy ) Broken Time-Reversal Symmetry Handedness: Broken Mirror Symmetry T Ψ( r ) = f ( r ) ( x − iy )

  5. Chiral Quantum Matter Chiral Diatomic Molecules Molecular Chiral Enantiomers Ψ( r ) = f ( r ) ( x + iy ) Mirror Broken Mirror Symmetries Π zx Ψ( r ) = f ( r ) ( x − iy ) Broken Time-Reversal Symmetry Handedness: Broken Mirror Symmetry T Ψ( r ) = f ( r ) ( x − iy ) Realized in Superfluid 3 He-A & possibly the ground states in unconventional superconductors

  6. Chiral Quantum Matter Chiral Diatomic Molecules Molecular Chiral Enantiomers Ψ( r ) = f ( r ) ( x + iy ) Mirror Broken Mirror Symmetries Π zx Ψ( r ) = f ( r ) ( x − iy ) Broken Time-Reversal Symmetry Handedness: Broken Mirror Symmetry T Ψ( r ) = f ( r ) ( x − iy ) Realized in Superfluid 3 He-A & possibly the ground states in unconventional superconductors Signatures: Chiral, Edge Fermions � Anomalous Hall Transport

  7. Chiral Superconductors Ground states exhibiting: ◮ Emergent Topology of a Broken-Symmetry Vacuum of Cooper Pairs ◮ Weyl-Majorana excitations of the Vacuum ◮ Ground-State Edge Currents and Angular Momemtum ◮ Broken P and T � Anomalous Hall-Type Transport

  8. Chiral Superconductors Ground states exhibiting: ◮ Emergent Topology of a Broken-Symmetry Vacuum of Cooper Pairs ◮ Weyl-Majorana excitations of the Vacuum ◮ Ground-State Edge Currents and Angular Momemtum ◮ Broken P and T � Anomalous Hall-Type Transport Where are They? ◮ 3 He-A: definitive chiral p-wave condensate; quantitative theory-experimental confirmation ◮ Sr 2 RuO 4 : proposed as the electronic analog of 3 He-A; evidence of chirality ◮ UPt 3 : electronic analog to 3 He: Multiple Superconducting Phases; evidence of chirality ◮ Other candidates: URu 2 Si 2 ; SrPtAs, doped graphene ...

  9. The Pressure-Temperature Phase Diagram for Liquid 3 He Superfluid Phases of 3 He Maximal Symmetry: G = SO ( 3 ) S × SO ( 3 ) L × U ( 1 ) N × P × T → 34 A 30 T AB 24 B p/ bar 18 p PCP 12 T c 6 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 T/ mK ◮ J. Wiman & J. A. Sauls, PRB 92, 144515 (2015)

  10. Realization of Broken Time-Reversal and Mirror Symmetry by the Vacuum State of 3 He Films ◮ Length Scale for Strong Confinement: SO ( 3 ) S × SO ( 3 ) L × U ( 1 ) N × T × P ξ 0 = � v f / 2 πk B T c ≈ 20 − 80 nm ⇓ ◮ L. Levitov et al., Science 340, 6134 (2013) SO ( 2 ) S × U ( 1 ) N-L z × Z 2 ◮ A. Vorontsov & J. A. Sauls, PRL 98, 045301 (2007) Chiral ABM State � 1 l = ˆ z 0.8 B A 0.6 0.4 0.2 Stripe Pha se 0 0 10 20 � � � Ψ ↑↑ � p x + ip y ∼ e + iφ Ψ ↑↓ 0 = Ψ ↑↓ Ψ ↓↓ p x + ip y ∼ e + iφ 0 ABM

  11. Realization of Broken Time-Reversal and Mirror Symmetry by the Vacuum State of 3 He Films ◮ Length Scale for Strong Confinement: SO ( 3 ) S × SO ( 3 ) L × U ( 1 ) N × T × P ξ 0 = � v f / 2 πk B T c ≈ 20 − 80 nm ⇓ ◮ L. Levitov et al., Science 340, 6134 (2013) SO ( 2 ) S × U ( 1 ) N-L z × Z 2 ◮ A. Vorontsov & J. A. Sauls, PRL 98, 045301 (2007) Chiral ABM State � 1 l = ˆ z 0.8 B A 0.6 0.4 0.2 Stripe Pha se L z = 1 , S z = 0 0 0 10 20 Ground-State Angular Momentum � � L z � = N � Ψ ↑↑ � � � 2 � ? p x + ip y ∼ e + iφ Ψ ↑↓ 0 = Ψ ↑↓ Ψ ↓↓ p x + ip y ∼ e + iφ Open Question 0 ABM

  12. Momentum-Space Topology Topology in Momentum Space Winding Number of the Phase: Ψ( p ) = ∆( p x ± ip y ) ∼ e ± iϕ p L z = ± 1 � N 2D = 1 1 d p · | Ψ( p ) | Im [ ∇ p Ψ( p )] = L z 2 π ◮ Massless Chiral Fermions ◮ Nodal Fermions in 3D ◮ Edge Fermions in 2D

  13. Massless Chiral Fermions in the 2D 3 He-A Films π ∆ | p x | ξ ∆ = � v f / 2∆ ≈ 10 2 ˚ ε + iγ − ε bs ( p || ) e − x/ξ ∆ Edge Fermions: G R edge ( p , ε ; x ) = A ≫ � /p f ◮ ε bs = − c p || with c = ∆ /p f ≪ v f ◮ Broken P & T � Edge Current Unoccupied Vacuum Occupied ◮ M. Stone, R. Roy, PRB 69, 184511 (2004) ◮ J. A. Sauls, Phys. Rev. B 84, 214509 (2011)

  14. Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid ∆ ~ (p + i p ) z x y ◮ R ≫ ξ 0 ≈ 100 nm y R ◮ Sheet Current : � ^ l J J ≡ dx J ϕ ( x ) x

  15. Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid ∆ ~ (p + i p ) z x y ◮ R ≫ ξ 0 ≈ 100 nm y R ◮ Sheet Current : � ^ l J J ≡ dx J ϕ ( x ) x 1 ( n = N/V = 3 He density) ◮ Quantized Sheet Current: 4 n � J = − 1 w.r.t. Chirality: ˆ ◮ Edge Current Counter -Circulates: 4 n � l = + z

  16. Chiral Edge Current Circulating a Hole or Defect in a Chiral Superfluid ∆ ~ (p + i p ) z x y ◮ R ≫ ξ 0 ≈ 100 nm y R ◮ Sheet Current : � ^ l J J ≡ dx J ϕ ( x ) x 1 ( n = N/V = 3 He density) ◮ Quantized Sheet Current: 4 n � J = − 1 w.r.t. Chirality: ˆ ◮ Edge Current Counter -Circulates: 4 n � l = + z ◮ Angular Momentum: L z = 2 π h R 2 × ( − 1 4 n � ) = − ( N hole / 2) � N hole / 2 = Number of 3 He Cooper Pairs excluded from the Hole ∴ An object in 3 He-A inherits angular momentum from the Condensate of Chiral Pairs!

  17. Electron bubbles in the Normal Fermi liquid phase of 3 He ◮ Bubble with R ≃ 1 . 5 nm, ◮ QPs mean free path l ≫ R 0 . 1 nm ≃ λ f ≪ R ≪ ξ 0 ≃ 80 nm ◮ Mobility of 3 He is independent of T for ◮ Effective mass M ≃ 100 m 3 T c < T < 50 mK ( m 3 – atomic mass of 3 He) B. Josephson and J. Leckner, PRL 23, 111 (1969)

  18. Current bound to an electron bubble ( k f R = 11 . 17 ) ∆ ~ (p + i p ) z x y y R = ⇒ ^ l J x L ( T → 0) ≈ − � N bubble / 2ˆ l ≈ − 100 � ˆ l

  19. Electron bubbles in chiral superfluid 3 He-A ∆(ˆ k ) = ∆(ˆ k x + i ˆ k y ) = ∆ e iφ k quasiparticle v AH v E � �� � ���� µ AH E × ˆ ◮ Current: v = µ ⊥ E + l R. Salmelin, M. Salomaa & V. Mineev, PRL 63 , 868 (1989) tan α = v AH /v E = | µ AH /µ ⊥ | ◮ Hall ratio:

  20. Mobility of e -bubbles in 3 He-A (Ikegami, et al., RIKEN) Science 341 , 59 (2013); JPSJ 82 , 124607 (2013); JPSJ 84 , 044602 (2015) v AH v E � �� � ���� µ AH E × ˆ Electric current: v = µ ⊥ E + Hall ratio: tan α = v AH /v E = | µ AH /µ ⊥ | l

  21. Mobility of e -bubbles in 3 He-A (Ikegami, et al., RIKEN) Science 341 , 59 (2013); JPSJ 82 , 124607 (2013); JPSJ 84 , 044602 (2015) v AH v E � �� � ���� µ AH E × ˆ Electric current: v = µ ⊥ E + Hall ratio: tan α = v AH /v E = | µ AH /µ ⊥ | l

  22. Mobility of e -bubbles in 3 He-A (Ikegami, et al., RIKEN) Science 341 , 59 (2013); JPSJ 82 , 124607 (2013); JPSJ 84 , 044602 (2015) v AH v E � �� � ���� µ AH E × ˆ Electric current: v = µ ⊥ E + Hall ratio: tan α = v AH /v E = | µ AH /µ ⊥ | l

  23. Mobility of e -bubbles in 3 He-A (Ikegami, et al., RIKEN) Science 341 , 59 (2013); JPSJ 82 , 124607 (2013); JPSJ 84 , 044602 (2015) v AH v E � �� � ���� µ AH E × ˆ Electric current: v = µ ⊥ E + Hall ratio: tan α = v AH /v E = | µ AH /µ ⊥ | l tan α

  24. Forces on the Electron bubble in 3 He-A: ◮ M d v dt = e E + F QP , F QP – force from quasiparticle collisions

  25. Forces on the Electron bubble in 3 He-A: ◮ M d v dt = e E + F QP , F QP – force from quasiparticle collisions ↔ ↔ ◮ F QP = − η · v , η – generalized Stokes tensor   η ⊥ η AH 0 ◮ ↔ for broken PT symmetry with ˆ η = − η AH η ⊥ 0 l � e z   0 0 η �

  26. Forces on the Electron bubble in 3 He-A: ◮ M d v dt = e E + F QP , F QP – force from quasiparticle collisions ↔ ↔ ◮ F QP = − η · v , η – generalized Stokes tensor   η ⊥ η AH 0 ◮ ↔ for broken PT symmetry with ˆ η = − η AH η ⊥ 0 l � e z   0 0 η � M d v dt = e E − η ⊥ v + e for E ⊥ ˆ c v × B eff , ◮ l B eff = − c B eff ≃ 10 3 − 10 4 T eη AH ˆ !!! ◮ l

  27. Forces on the Electron bubble in 3 He-A: ◮ M d v dt = e E + F QP , F QP – force from quasiparticle collisions ↔ ↔ ◮ F QP = − η · v , η – generalized Stokes tensor   η ⊥ η AH 0 ◮ ↔ for broken PT symmetry with ˆ η = − η AH η ⊥ 0 l � e z   0 0 η � M d v dt = e E − η ⊥ v + e for E ⊥ ˆ c v × B eff , ◮ l B eff = − c B eff ≃ 10 3 − 10 4 T eη AH ˆ !!! ◮ l ◮ Mobility: d v ↔ ↔ ↔ − 1 dt = 0 � v = µ E , where µ = e η ◮ O. Shevtsov and JAS, Phys. Rev. B 96, 064511 (2016)

Recommend


More recommend