from multiplicity awareness to computation correlation
play

From multiplicity awareness to computation correlation Jacques - PowerPoint PPT Presentation

From multiplicity awareness to computation correlation Jacques Sakarovitch LTCI CNRS/ENST The results presented in this talk are taken from a joint work with Marie-Pierre B eal and Sylvain Lombardy, IGM, Universit e Paris-Est,


  1. From multiplicity awareness to computation correlation Jacques Sakarovitch LTCI – CNRS/ENST

  2. The results presented in this talk are taken from a joint work with Marie-Pierre B´ eal and Sylvain Lombardy, IGM, Universit´ e Paris-Est, Marne-la-Vall´ ee, published in On the equivalence and conjugacy of weighted automata. in Proc. of CSR’06 , LNCS 3967. The complete journal version is still in preparation. Some of the results have been included in the chapter Rational and recognizable series of the Handbook of Weighted Automata , Springer, 2009.

  3. Part I An introductory result

  4. The Rational Bijection Theorem Proposition If two regular languages have the same growth function, then there exists a letter-to-letter rational bijection that maps one language onto the other.

  5. An example: a first language K = ( c + d c + d d ) ∗ \ { c c ( c + d ) ∗ ∪ 1 B ∗ }

  6. An example: a first language K = ( c + d c + d d ) ∗ \ { c c ( c + d ) ∗ ∪ 1 B ∗ } c d c + d r s u t c d d B

  7. An example: a first language K = ( c + d c + d d ) ∗ \ { c c ( c + d ) ∗ ∪ 1 B ∗ } c d c + d r s u t c d d B c cdc cdcc dcdd cdd cddc ddcc dc dcc dccc dddc dd ddc dcdc dddd

  8. An example: a first language K = ( c + d c + d d ) ∗ \ { c c ( c + d ) ∗ ∪ 1 B ∗ } c d c + d r s u t c d d B c cdc cdcc dcdd cdd cddc ddcc dc dcc dccc dddc dd ddc dcdc dddd g K ( n ) = Card ( K ∩ { c , d } n ) = 2 n − 1 ∀ n ∈ N

  9. An example: a second language L = a ( a + b ) ∗

  10. An example: a second language L = a ( a + b ) ∗ a a p q A b

  11. An example: a second language L = a ( a + b ) ∗ a a p q A b a aaa aaaa abaa aab aaab abab aa aba aaba abba ab abb aabb abbb

  12. An example: a second language L = a ( a + b ) ∗ a a p q A b a aaa aaaa abaa aab aaab abab aa aba aaba abba ab abb aabb abbb g L ( n ) = Card ( L ∩ { a , b } n ) = 2 n − 1 ∀ n ∈ N

  13. An example: the rational bijection K = ( c + d c + d d ) ∗ \{ c c ( c + d ) ∗ ∪ 1 B ∗ } L = a ( a + b ) ∗ a | c a | c b | c a | d quz 12 quz 21 qty b | c b | d a | d a | d a | d qtz 1 qtz 2 a | d prx b | c b | d a | c b | d b | d a | c a | c a | c b | d b | d qsy quz 11 quz 22 a aaa aaaa abaa c cdc cdcc dcdd aab aaab abab cdd cddc ddcc aa aba aaba abba dc dcc dccc dddc ab abb aabb abbb dd ddc dcdc dddd

  14. An example: the rational bijection K = ( c + d c + d d ) ∗ \{ c c ( c + d ) ∗ ∪ 1 B ∗ } L = a ( a + b ) ∗ a | c a | c b | c a | d quz 12 quz 21 qty b | c b | d a | d a | d a | d qtz 1 qtz 2 a | d prx b | c b | d a | c a | c a | c b | d b | d a | c a | c a | c b | d b | d qsy quz 11 quz 22 a aaa aaaa abaa c cdc cdcc dcdd aab aaab abab cdd cddc ddcc aa aba aaba abba dc dcc dccc dddc ab abb aabb abbb dd ddc dcdc dddd

  15. An example: the rational bijection K = ( c + d c + d d ) ∗ \{ c c ( c + d ) ∗ ∪ 1 B ∗ } L = a ( a + b ) ∗ a | c a | c b | c a | d quz 12 quz 21 qty b | c b | d a | d a | d a | d a | d a | d qtz 1 qtz 2 a | d prx b | c b | d a | c b | d b | d a | c a | c a | c b | d b | d b | d b | d qsy quz 11 quz 22 a aaa aaaa abaa c cdc cdcc dcdd aab aaab abab cdd cddc ddcc aa aba aaba abba dc dcc dccc dddc ab abb aabb abbb dd ddc dcdc dddd

  16. An example: the rational bijection K = ( c + d c + d d ) ∗ \{ c c ( c + d ) ∗ ∪ 1 B ∗ } L = a ( a + b ) ∗ a | c a | c b | c a | d quz 12 quz 21 qty b | c b | d a | d a | d a | d qtz 1 qtz 2 a | d prx b | c b | d b | d b | d a | c a | c a | c b | d b | d a | c a | c a | c b | d b | d b | d b | d qsy quz 11 quz 22 a aaa aaaa abaa c cdc cdcc dcdd aab aaab abab cdd cddc ddcc aa aba aaba abba dc dcc dccc dddc ab abb aabb abbb dd ddc dcdc dddd

  17. An example: the rational bijection K = ( c + d c + d d ) ∗ \{ c c ( c + d ) ∗ ∪ 1 B ∗ } L = a ( a + b ) ∗ a | c a | c b | c b | c b | c a | d quz 12 quz 21 qty b | c b | d a | d a | d a | d a | d a | d a | d a | d qtz 1 qtz 2 a | d prx b | c b | c b | c b | d a | c b | d b | d a | c a | c a | c b | d b | d qsy quz 11 quz 22 a aaa aaaa abaa c cdc cdcc dcdd aab aaab abab cdd cddc ddcc aa aba aaba abba dc dcc dccc dddc ab abb aabb abbb dd ddc dcdc dddd

  18. The result on this example: how to construct the transducer a | c a | c b | c a | d quz 12 quz 21 qty b | c b | d a | d a | d a | d qtz 1 qtz 2 a | d prx b | c b | d a | c b | d b | d a | c a | c a | c b | d b | d qsy quz 11 quz 22 from the automata c a + b d c + d a and p q r s t u c d d A B

  19. Part II The link between growth functions and automata

  20. The generating function K = ( c + d c + d d ) ∗ \{ c c ( c + d ) ∗ ∪ 1 B ∗ } A language that is,

  21. The generating function K = ( c + d c + d d ) ∗ \{ c c ( c + d ) ∗ ∪ 1 B ∗ } A language that is, c d c + d an unambiguous automaton r s u t c d d B

  22. The generating function K = ( c + d c + d d ) ∗ \{ c c ( c + d ) ∗ ∪ 1 B ∗ } A language that is, c d c + d an unambiguous automaton r s u t c d d B is transformed into an automaton over { z } ∗ with weight in N 1 z 1 z 2 z r s u t 1 z 1 z 1 z B ′

  23. The generating function K = ( c + d c + d d ) ∗ \{ c c ( c + d ) ∗ ∪ 1 B ∗ } A language that is, c d c + d an unambiguous automaton r s u t c d d B is transformed into an automaton over { z } ∗ with weight in N 1 z 1 z 2 z r s u t 1 z 1 z 1 z B ′ � g K ( n ) z n which realises the generating function G K ( z ) = n ∈ N

  24. Two regular languages with equal growth functions (i) Two finite automata A and B , preferably unambiguous, c a + b d c + d a p q r s u t c d d A B

  25. Two regular languages with equal growth functions (i) Two finite automata A and B , preferably unambiguous, transformed into A ′ and B ′ , over { z } ∗ with multiplicity in N , (ii) which realise the generating functions G L ( z ) and G K ( z ) : g K ( n ) z n , � g L ( n ) z n � G L ( z ) = and G K ( z ) = n ∈ N n ∈ N c a + b d c + d a p q r s u t c d d A B

  26. Two regular languages with equal growth functions (i) Two finite automata A and B , preferably unambiguous, transformed into A ′ and B ′ , over { z } ∗ with multiplicity in N , (ii) which realise the generating functions G L ( z ) and G K ( z ) : g K ( n ) z n , � g L ( n ) z n � G L ( z ) = and G K ( z ) = n ∈ N n ∈ N 2 z 1 z 1 z 2 z 1 z p q r s u t 1 z 1 z 1 z A ′ B ′

  27. Two regular languages with equal growth functions (i) Two finite automata A and B , preferably unambiguous, transformed into A ′ and B ′ , over { z } ∗ with multiplicity in N , (ii) which realise the generating functions G L ( z ) and G K ( z ) : g K ( n ) z n , � g L ( n ) z n � G L ( z ) = and G K ( z ) = n ∈ N n ∈ N (iii) and whose equivalence is decidable (Sch¨ utzenberger 1961, Eilenberg 1974). 2 z 1 z 1 z 2 z 1 z p q r s u t 1 z 1 z 1 z A ′ B ′

  28. Two regular languages with equal growth functions Generating functions are realised by weighted automata

  29. Weighted automata, a first look a 2 a b p q b 2 b b a b p − − → p − − → p − − → q 2 a 2 b b p − − → q − − → q − − → q ∀ w ∈ A ∗ b ab �− → 5 w �− → � w � 2 s : A ∗ − � A ∗ � → N s : w �− → < s , w > s ∈ N � � s = b + ab + 2 b a + 3 b b + aab + 2 ab a + 3 ab b + 4 b aa + 5 b ab + . . .

  30. Series play the role of languages � A ∗ � � plays the role of P ( A ∗ ) K �

  31. Richness of the model of weighted automata ‘classic’ automata B ◮ ‘usual’ counting N ◮ Z , Q , R numerical multiplicity ◮ M = � N , min , + � Min-plus automata ◮ P ( B ∗ ) = B � � B ∗ � � transducers ◮ N � � B ∗ � � weighted transducers ◮ P ( F ( B )) pushdown automata ◮

  32. Equivalence of weighted automata The equivalence of weighted automata with weights in

  33. Equivalence of weighted automata The equivalence of weighted automata with weights in the Boolean semiring B is decidable

  34. Equivalence of weighted automata The equivalence of weighted automata with weights in the Boolean semiring B decidable a field is decidable

  35. Equivalence of weighted automata The equivalence of weighted automata with weights in the Boolean semiring B decidable a subsemiring of a field is decidable

  36. Equivalence of weighted automata The equivalence of weighted automata with weights in the Boolean semiring B decidable a subsemiring of a field decidable ( Z , min , +) is undecidable

  37. Equivalence of weighted automata The equivalence of weighted automata with weights in the Boolean semiring B decidable a subsemiring of a field decidable ( Z , min , +) undecidable Rat B ∗ is undecidable The equivalence of transducers is undecidable

  38. Equivalence of weighted automata The equivalence of weighted automata with weights in the Boolean semiring B decidable a subsemiring of a field decidable ( Z , min , +) undecidable Rat B ∗ undecidable N Rat B ∗ is decidable The equivalence of transducers undecidable transducers with multiplicity in N is decidable

Recommend


More recommend