Francisco Cabaleiro LEEPCI – Laval University (Canada) CERN – European Organization for Nuclear Research
Outline Introduction • • Objectives • R&D Status • Methodology • Topology Selection • Power & Droop Compensators • Monolithic Pulse Transformer • Schedule CLIC Workshop 2014 3 2/3/2014
Introduction • Pulse Requirements Voltage [V] V ovs Nominal pulse voltage V kn 150 - 180 KV V kn FTS Nominal pulse current I kn 160 - 195 A 3 m s Rise & Fall Times t rise, t fall real pulse ideal pulse 5 m s Settling time t set 140 m s Pulse Length t flat Repetition Rate REPR 50 Hz Time [s] t rise t set t fall t at Voltage overshoot V ovs 1 % Flat-top stability FTS 0.85 % ~1300 modulators of 29MW Pulse to pulse repeatability PPR 10 ppm ŋ pulse Pulse efficiency 95 % Total peak power: ~40 GW ŋ pfs PFS electrical efficiency 98 % Average power consumption: ŋ mod_global Modulator global efficiency 90 % ~300 MW CLIC Workshop 2014 4 4
Objectives Optimal Design of a Klystron Modulator for CLIC-DB, • based on a monolithic transformer based topology, capable of: • Respecting the challenging pulse and efficiency specifications. • Operating at constant power consumption klystron modulator klystron Main S witch (Msw) Capacitor V kly charger C1 Bouncer HV pulse transformer CLIC Workshop 2014 5 2/3/2014
R&D Status Influence of several modulator parameters • on active bouncer requirements 1600 225 m F 250 m F 275 m F 300 m F 1400 325 m F 350 m F 375 m F Examples: Output Voltage Fluctuation (V) 400 m F 1200 425 m F • HV charger bandwidth 450 m F 475 m F 1000 • Transformer droop 500 m F 525 m F • Main capacitor bank size 800 600 400 200 10 30 50 70 90 110 130 150 170 190 210 230 250 Bouncer Bandwidth (kHz) CLIC Workshop 2014 6 2/3/2014
R&D Status Influence of several modulator parameters • on active bouncer requirements • Need for an integrated system approach • Constrained nonlinear optimization Active Bouncer Main capacitor bank requirements size Voltage droop Capacitor charger in the transformer bandwidth CLIC Workshop 2014 7 2/3/2014
R&D Status Methodology • Topology Candidate Power Electronics System Design tool Full Power Prototype: Design & Experimental Validation Reliability Thermal Analysis Control Methods Modularity Redundancy Topology Choice Bandwidth Cost & & Ripple Volume Evaluation of other candidate topologies Integration of Design Tool into an Integrated Opt imal Design E nviromment Models Experimental Validation with Reduced-Scale Prototypes Considering all Klystron Modulator sub-components CLIC Workshop 2014 8 2/3/2014
R&D Status Topology Selection • a) b) CLIC Workshop 2014 9 2/3/2014
R&D Status Power & Droop Compensators: • • 300 kW prototype (1kV, 300A). Validation & Correction of Mathematical Models and Control Strategies CLIC Workshop 2014 10 2/3/2014
R&D Status Monolithic Pulse Transformer • Analytical Dimensioning 3D Model Correction FEA by 3D FEA Klystron Rated Operation Point 0.3 m 2D FEA Output Voltage Identification Pulse simulation Equivalent Circuit Objective & State Variables Thermal Contraints Vector Modelling Functions 0.8 m Evaluation Mechanical Modelling Dimensioning Model using 2D FEA Non Linear Constrained Optimization Procedure CLIC Workshop 2014 11 2/3/2014
R&D Status Monolithic Pulse Transformer • • HV Tests: Determination of expert coefficients MIDEL & Silicon PEEK test Insulation system test Oil tests CLIC Workshop 2014 12 2/3/2014
Schedule • 2014: Beginning of full scale construction: December 2014 • • Full Power Testing & Validation: 2015 CLIC Workshop 2014 13 2/3/2014
Recommend
More recommend