fluctuations and correlations of conserved charges in
play

Fluctuations and correlations of conserved charges in hadron - PowerPoint PPT Presentation

Fluctuations and correlations of conserved charges in hadron resonance gas model Subhasis Samanta National Institute of Science Education and Research, HBNI, Jatni, India Outline Introduction HRG models Ideal S-matrix formalism VDWHRG


  1. Fluctuations and correlations of conserved charges in hadron resonance gas model Subhasis Samanta National Institute of Science Education and Research, HBNI, Jatni, India Outline ⋆ Introduction ⋆ HRG models Ideal S-matrix formalism VDWHRG ⋆ Summary S Samanta CETHENP 2019, VECC, India 1 / 25

  2. Introduction hadrons/leptons The major goals ⋆ The mapping of QCD phase diagram ⋆ Locating the QCD critical point √ s NN (GeV) Facility µ B (MeV) Status LHC 2760 0 Running RHIC 7.7 - 200 420-20 Running NA61/ SHINE 8 400 Running FAIR 2.7-4.9 800-500 Future NICA 4-11 600-300 Future HRG models have been used to study hadronic phase S Samanta CETHENP 2019, VECC, India 2 / 25

  3. Ideal Hadron Resonance Gas model ⋆ System consists of all the hadrons including resonances (non-interacting point particles) ⋆ Hadrons are in thermal and chemical equilibrium ⋆ The grand canonical partition function of a hadron resonance ln Z = � gas: i ln Z i ⋆ For i th hadron/resonance, i = Vg i j = 1 ( ± 1 ) j − 1 ( z j / j 2 ) K 2 ( jm i / T ) , z = exp ( µ/ T ) , ln Z id 2 π 2 m 2 i T � ∞ µ i = B i µ B + S i µ S + Q i µ Q The + (-) sign refers to bosons (fermions) The first term ( j = 1) corresponds to the classical ideal gas Width of the resonances are ignored S Samanta CETHENP 2019, VECC, India 3 / 25

  4. EOS of IDHRG at µ = 0 6 PDG 2016 LQCD 3P ⋆ IDHRG provides a 4 T ε 4 satisfactory description in 4 T the hadronic phase of 3s continuum LQCD data 3 4T 2 0 0.05 0.1 0.15 T (GeV) S. Samanta et al. JPG 46, 065106 (2019); LQCD data: A. Bazavov et al. (HotQCD), PRD 90, 094503 (2014) S Samanta CETHENP 2019, VECC, India 4 / 25

  5. Problem to quantify χ BS , C BS 0.12 HRG (PDG 2016) SB limit 1 Lattice (HotQCD) 0.1 0.8 0.08 C BS 0.6 N t =6 N t =8 - χ BS 11 N t =10 0.4 0.06 N t =12 N t =16 0.2 0.04 cont. HRG 0 0.02 150 200 250 300 350 400 T [MeV] 0 100 110 120 130 140 150 160 170 T (MeV) Ref: A. Borsanyi et al., JHEP01, 138 (2012) ⋆ IDHRG fails to describe χ BS , C BS = − 3 χ 11 BS /χ 2 S ⇒ Interaction is needed S Samanta CETHENP 2019, VECC, India 5 / 25

  6. Classical Virial Expansion (Non-relativistic) � � � 2 � N � � N P = NT 1 + B ( T ) + C ( T ) + .. V V V ⋆ The first term in the expansion corresponds to an ideal gas ⋆ The second term is obtained by taking into account the interaction between pairs of particles and subsequent terms involve the interaction between groups of three,four, etc. particles ⋆ B , C , ... are called second, third, etc., virial coefficients Second virial coefficient B ( T ) = 1 � ( 1 − e − U 12 / T ) dV 2 U 12 is the two body interaction energy S Samanta CETHENP 2019, VECC, India 6 / 25

  7. Relativistic Virial Expansion i 1 , i 2 z i 1 1 z i 2 ln Z = ln Z 0 + � 2 b ( i 1 , i 2 ) d 3 p � − β ( p 2 + ε 2 ) 1 / 2 � �� �� ∂ε − ∂ S − 1 V S − 1 ∂ S � � b ( i 1 , i 2 ) = d ε exp ∂ε S 4 π i ( 2 π ) 3 aa → R → aa , ab → R → ab , aab → R → aab etc. ⋆ z 1 and z 2 are fugacities of two species ( z = e βµ ) ⋆ The labels i 1 and i 2 refer to a channel of the S-matrix which has an initial state containing i 1 + i 2 particles Second virial coefficient b 2 = b ( i 1 , i 2 ) / V where i 1 = i 2 = 1 ππ → R → ππ π K → R → π K KK → R → KK π N → R → π N etc. S Samanta CETHENP 2019, VECC, India 7 / 25

  8. Interacting part of pressure b 2 in terms of phase shift � ∞ ∂δ I l ( ε ) 1 ′ g I , l M d εε 2 K 2 ( βε ) � b 2 = 2 π 3 β l , I ∂ε P int = 1 ∂ ln Z int = 1 β z 1 z 2 b 2 β ∂ V � ∞ ∂δ I l ( ε ) z 1 z 2 d εε 2 K 2 ( βε ) � ′ g I , l = 2 π 3 β 2 ∂ε M I , l ⋆ Interaction is attractive (repulsive) if derivative of the phase shift is positive (negative) S Samanta CETHENP 2019, VECC, India 8 / 25

  9. K-matrix formalism (Attractive part of the interaction) Scattering amplitude: S ab → cd = � cd | S | ab � Scattering operator (matrix) S = I + 2 iT S is unitary SS † = S † S = I ( T − 1 + iI ) † = T − 1 + iI K − 1 = T − 1 + iI , K = K † (i.e., K matrix is real and symmetric) S Samanta CETHENP 2019, VECC, India 9 / 25

  10. Phase shift in K-matrix formalism − 1 ⇒ Im T / Re T = K − 1 , Re T = K ( I + K 2 ) Im T = K 2 ( I + K 2 ) m R Γ R → ab ( √ s ) � K ab → R → ab = m 2 R − s R Resonances appear as sum of poles in the K matrix Partial wave decomposition S l = exp ( 2 i δ l ) = 1 + 2 iT l ⇒ T l = exp ( i δ ) sin ( δ l ) Im T l = sin 2 ( δ l ) Re T l = sin ( δ l ) cos ( δ l ) , δ l = tan − 1 ( K ) K = tan ( δ l ) , S Samanta CETHENP 2019, VECC, India 10 / 25

  11. Phase shift: Empirical vs KM 3.5 3.5 3 3 2.5 2.5 2 2 δ (rad) δ (rad) 1.5 1.5 1 1 0.5 0.5 KM KM Empirical Empirical 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 ε (GeV) ε (GeV) π K → K ∗ ( 892 ) → π K ππ → ρ ( 770 ) → ππ ⋆ Good agreement between the empirical phase shifts of resonances and the K-matrix approach S Samanta CETHENP 2019, VECC, India 11 / 25

  12. Comparison between K-matrix and Breit-Wigner approach 12 8 KM KM BW BW 7 10 6 8 5 σ (mb) σ (mb) 6 4 3 4 2 (a) (b) 2 1 0 0 0.8 1 1.2 1.4 1.6 1.8 2 0.8 1 1.2 1.4 1.6 1.8 2  s (GeV) √ √  s (GeV) f 0 (980) ( m 1 = 990 MeV, Γ 1 = 55 MeV) f 0 (1370) ( m 1 = 1370 MeV, Γ 1 = 350 MeV) and f 0 (1500) ( m 2 = 1505 MeV, Γ 2 = 109 MeV) and f 0 (1500) ( m 2 = 1505 MeV, Γ 2 = 109 MeV) ⋆ KM formalism preserves the unitarity of the S matrix and neatly handles overlapping resonances S. Samanta et al. PRC 97, 055208 (2018) S Samanta CETHENP 2019, VECC, India 12 / 25

  13. Ideal gas limit ⋆ For a narrow resonance, δ I l changes rapidly through π radian around ε = m R ⋆ δ I l can be approximated by a step function: δ I l ∼ Θ( ε − m R ) ⋆ ∂δ I l /∂ε ≈ πδ ( ε − m R ) � ∞ ∂δ I l ( ε ) 1 d εε 2 K 2 ( βε ) � ′ g I , l b 2 = 3.5 2 π 3 β ∂ε M l , I 3 = g I , l 2.5 2 π 2 m 2 R TK 2 ( β m R ) 2 δ (rad) 1.5 1 P int = Tz 1 z 2 b 2 = P R 0.5 KM id Empirical 0 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 ε (GeV) ⋆ Pressure exerted by an ideal (MB) gas of particles of mass m R ⋆ This establishes the fundamental premise of the IDHRG model S Samanta CETHENP 2019, VECC, India 13 / 25

  14. Repulsive interaction from experimental data of phase shift 2 ⋆ NN interaction: 3 S 1 1 S 0 1 G 4 1 1 3 D 2 1 D 2 3 H 4 1.5 3 D 1 3 P 1 3 H 5 3 D 3 3 P 2 3 H 6 All available data 1 P 1 3 F 2 1 I 6 0.5 0.5 3 F 3 3 J 6 1 3 F 4 3 J 7 δ (rad) δ (rad) δ (rad) ⋆ ππ repulsive 0.5 0 0 0 interaction: δ 2 -0.5 -0.5 (b) (a) (a) 0 -0.5 I = 0 I = 1 I = 1 ⋆ KN repulsive -1 -1 -1 1.92 2 2.08 2.16 2.24 2.32 1.92 1.92 2 2 2.08 2.08 2.16 2.16 2.24 2.24 2.32 2.32 interaction:  s (GeV)  s (GeV)  s (GeV) √ √ √ 2 0 S 11 ( l I , 2 J ) ( Σ( 1660 ) ) 0 − 0.05 − 0.1 1.5 − 0.1 − 0.2 ⋆ π N repulsive − 0.15 1 − 0.3 (rad) − (rad) (rad) 0.2 − 0.5 0.4 interaction: S 31 − 0.25 δ δ δ − 0.5 − 0.3 0 − 0.6 ( l 2 I , 2 J ) ( ∆( 1620 ) ), − 0.35 − − 0.7 0.5 − 0.4 ∆( 1910 ) , N ( 1720 ) − 0.8 − 0.45 − 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 2 2.1 2.2 2.3 etc. s (GeV) s (GeV) s (GeV) ππ : ( δ 2 0 ) KN : S 11 π N : S 31 ⋆ Σ( 1660 ) , Σ( 1750 ) , Σ( 1915 ) , ∆( 1620 ) ), ∆( 1910 ) , ∆( 1930 ) , N ( 1720 ) etc. are included in the repulsive part Ref: SAID [http://gwdac.phys.gwu.edu] S Samanta CETHENP 2019, VECC, India 14 / 25

  15. Results 1.2 7 Total Total ⋆ KM: Attractive KM KM 6 1 IDHRG IDHRG interaction Lattice (WB) Lattice (WB) 5 0.8 Lattice (HotQCD) Lattice (HotQCD) 4 ⋆ Total: Attractive + P/T 4 0.6 ε /T 4 3 repulsive 0.4 2 ⋆ Both KM and Total 0.2 1 (a) (b) contain 0 0 100 110 120 130 140 150 160 170 100 110 120 130 140 150 160 170 non-interacting T (MeV) T (MeV) 0.65 0.12 part as well Total Total 0.6 KM KM 0.1 IDHRG (PDG 2016) IDHRG 0.55 ⋆ Repulsive Lattice (WB) Lattice (HotQCD) 0.5 Lattice (HotQCD) Lattice 0.08 interactions 0.45 - χ BS 11 0.4 0.06 χ Q 2 suppress the bulk 0.35 0.04 variables 0.3 0.25 0.02 (b) 0.2 (c) 0.15 0 100 110 120 130 140 150 160 170 100 110 120 130 140 150 160 170 T (MeV) T (MeV) S. Samanta et al. PRC 99, 044919 (2019) S Samanta CETHENP 2019, VECC, India 15 / 25

  16. χ 2 B − χ 4 B and C BS 10 0 1.2 2 - χ B 4 Total χ B 10 -1 4 - χ B 2 KM χ B 1 IDHRG (PDG 2016) 2 - χ B 4 (Lattice) χ B 10 -2 IDHRG (PDG 2016+) 4 - χ B 2 (Lattice) χ B Lattice (WB) 0.8 10 -3 Lattice (HotQCD) 2 - χ B 4 C BS 10 -4 0.6 χ B 10 -5 0.4 10 -6 0.2 10 -7 (b) 10 -8 0 100 110 120 130 140 150 160 170 100 110 120 130 140 150 160 170 T (MeV) T (MeV) ⋆ χ 2 B − χ 4 B is non-zero ⋆ For C BS : Improvement compared to IDHRG S. Samanta et al. PRC 99, 044919 (2019) S Samanta CETHENP 2019, VECC, India 16 / 25

  17. Excluded volume hadron resonance gas model ⋆ Hadrons have finite hard-core radii. ( P ( V − Nb ) = NT ) 3 π R 3 is the volume excluded for the hadron. ⋆ b = V ex = 16 ⋆ Pressure and chemical potential in EVHRG model: � P id P ( T , µ 1 , µ 2 , .. ) = i ( T , ˆ µ 1 , ˆ µ 2 , .. ) , i µ i = µ i − V ev , i P ( T , µ 1 , µ 2 , .. ) ˆ S Samanta CETHENP 2019, VECC, India 17 / 25

Recommend


More recommend