fitting and non rigid registration
play

fitting and non-rigid registration Marcel Lthi, Christoph Jud and - PowerPoint PPT Presentation

A unified approach to shape model fitting and non-rigid registration Marcel Lthi, Christoph Jud and Thomas Vetter University of Basel Shape modeling pipeline Acquisition Registration Modeling Fitting Correspondence Correspondence


  1. A unified approach to shape model fitting and non-rigid registration Marcel LΓΌthi, Christoph Jud and Thomas Vetter University of Basel

  2. Shape modeling pipeline Acquisition Registration Modeling Fitting Correspondence Correspondence 𝑂(𝜈, Ξ£)

  3. Shape modeling pipeline Acquisition Registration Modeling Fitting Correspondence Correspondence 𝑂(𝜈, Ξ£) β€’ Strong prior β€’ Weak prior assumptions β€’ Parametric β€’ Non-parametric β€’ Standard optimization β€’ Variational approach β€’ Explicit probabilistic β€’ Implicit model model (regularization)

  4. Shape modeling pipeline Acquisition Registration Modeling Fitting Correspondence Correspondence 𝑂(𝜈, Ξ£) β€’ Strong prior β€’ Weak prior assumptions β€’ Parametric β€’ Parametric β€’ Standard optimization β€’ Standard optimization β€’ Explicit probabilistic β€’ Explicit probabilistic model model

  5. Outline Goal: Replace registration with model fitting β€’ Why model fitting β€’ Conceptual formulation – Statistical shape models and Gaussian processes β€’ How to make it practical – Low rank approximation β€’ Application to image registration

  6. Advantage 1: Sampling

  7. Advantage 2: Posterior models

  8. Advantage 3: Simple(r) optimization

  9. Statistical Shape Models β€’ Example data: Surfaces in correspondence with Reference Ξ“ 𝑆 … Ξ“ Ξ“ π‘œ 1

  10. Statistical Shape Models β€’ Example data: Surfaces in correspondence with Reference Ξ“ 𝑆 … Ξ“ 1 = Ξ“ 𝑆 + 𝑣 1 Ξ“ π‘œ = Ξ“ 𝑆 + 𝑣 π‘œ

  11. Statistical Shape Models β€’ Estimate mean and sample covariance: Ξ“ 𝑙 (𝑦 𝑗 ) Reference + mean deformation 𝜈 𝑦 𝑗 = 1 π‘œ 𝑦 𝑗 + 𝑣 𝑙 𝑦 𝑗 = 𝑦 𝑗 + 𝑣 𝑙 (𝑦 𝑗 ) 𝑙 Ξ“ 𝑙 (𝑦 𝑗 ) Ξ“ 𝑙 (𝑦 𝑗 ) Ξ£ 𝑦 𝑗 , 𝑦 π‘˜ = 1 π‘ˆ π‘œ 𝑦 𝑗 + 𝑣 𝑙 𝑦 𝑗 βˆ’ 𝜈 𝑦 𝑗 𝑦 π‘˜ + 𝑣 𝑙 𝑦 π‘˜ βˆ’ 𝜈 𝑦 π‘˜ 𝑙 Covariance of deformations = 1 π‘ˆ π‘œ 𝑣 𝑙 𝑦 𝑗 βˆ’ 𝑣 𝑦 𝑗 𝑣 𝑙 𝑦 π‘˜ βˆ’ 𝑣 𝑦 π‘˜ 𝑙

  12. Gaussian process view β€’ β€œDeformation model” on Ξ“ 𝑆 u ∼ 𝐻𝑄 𝑣, Ξ£ 𝑣: Ξ“ 𝑆 β†’ ℝ 3 β€’ Shape model: Ξ“ ∼ Ξ“ 𝑆 + 𝑣 Model deformations instead of learning them β€’ Ξ£(𝑦, 𝑧) can be arbitrary p.d. kernel β€’ 2 𝑦 βˆ’π‘§ 𝑙 𝑦, 𝑧 = exp (βˆ’ ) enforces smoothness β€’ 𝜏 2

  13. Registration using Gaussian processes β€’ Previous work: – U. Grenander, and M. I. Miller. Computational anatomy: An emerging discipline. Quarterly of applied mathematics, 1998 – B. SchΓΆlkopf, F. Steinke, and V. Blanz. Object correspondence as a machine learning problem. Proceedings of the ICML 2005. Challenge: Space of deformations is very high dimensional

  14. Back to statistical models: PCA Statistical model 𝑁[𝛽 𝑗 , … , 𝛽 𝑛 ] : 𝑗 𝜚 𝑗 (𝑦) 𝑛 𝑣(𝑦) = 𝑣 𝑦 + 𝛽 𝑗 βˆšπœ‡ , 𝛽 𝑗 ∼ 𝑂(0,1) 𝑗 β€’ Mercer’s Theorem: π‘œ 𝑙 𝑦, 𝑧 = πœ‡ 𝑗 𝜚 𝑗 𝑦 𝜚 𝑗 (𝑧) 𝑗=1 β€’ Use NystrΓΆm approximation to compute , 𝜚 𝑗 𝑗=1..𝑛 , (m β‰ͺ n) πœ‡ 𝑗 β€’ Low rank approximation of k(x,y)

  15. Eigenspectrum and smoothness 0 100

  16. Advantage 1: Sampling

  17. Advantage 2: Posterior models

  18. Advantage 3: Simple(r) optimization

  19. 3D Image registration Experimental Setup: β€’ 48 femur CT images β€’ Perform atlas matching β€’ Evaluation: dice coefficient with groundtruth segmentation

  20. Conclusion β€’ Replaced non-rigid registration with model fitting β€’ One concept / one algorithm – Parametric, generative model – Works for images an surfaces β€’ Extreme flexibility in choice of prior – Any kernel can be used – Future work: Design application specific kernels

  21. Thank you Source code available at: www.statismo.org

Recommend


More recommend