first experiments with the sprit tpc at samurai in riken
play

First Experiments with The SpRIT-TPC at SAMURAI in RIKEN-RIBF - PowerPoint PPT Presentation

First Experiments with The SpRIT-TPC at SAMURAI in RIKEN-RIBF : EOS(symmetry energy Mizuki Kurata-Nishimura For S RIT-TPC collaboration


  1. � First Experiments with The SpRIT-TPC at SAMURAI in RIKEN-RIBF � ���������������:� EOS(symmetry energy ����� Mizuki Kurata-Nishimura For S π RIT-TPC collaboration �����������

  2. Contents � v 2016 ������� RIKEN-RIBF-SAMURAI ����� ���� 132 Sn + 124 Sn ��� 108 Sn + 112 Sn ��� 124 Sn + 112 Sn �� 112 Sn + 124 Sn � 300MeV/u v ��������� v S π RIT-TPC ��� v ������������� v Photogrammetry measurement v ���� v TPC � Tracking v ���������� v TPC-PID v Summary & Perspectives

  3. TPC � Time Projection Chamber ” ������������ ” � l 荷電粒子が通る l ガスがイオン化され電子が飛跡に沿って弾き飛ばされる。 l 電子を電場によってドリフトさせる。 l ドリフトしてきた電子を強い電場で増幅する。 l 検出した電荷をパッドの位置から2次元分布に変換。 l 到達した時間から3次元情報を算出 E field 135V/cm B field 0.5T Beam: 132Sn, 108Sn, 124Sn, 112Sn Position in vertical drift Target:112Sn, 124Sn direction from time

  4. S π RIT-TPC � AsAd Boards � S π RIT-TPC is designed and • constructed at NSCL/MSU to be used in SAMURAI magnet chamber. � 2D-motion target system �

  5. Experimental Setup at SAMURAI in RIBF-RIKEN � Sn ~300MeV/u � SAMURAI dipole magnet � NeuLAND � n � 2m � π + , p, d, t….. �

  6. S π RIT-TPC Read-out Electronics � Assembling AsAds � RIKEN HPC xrootd � SpiRITROOT analysis � Disk � Disk � DAQ � DAQ � Semi-online Analysis � G. Jhang et al., J. Kor. Phys.Soci. � 9 Issue 2, pp 144–151(2016) � 10Gb network � 12 Cobos ��������� CoBo � CoBo � CoBo � CoBo � Air cooling � 4 AsAds into AsAd � AsAd � AsAd � AsAd � one Cobo AGET � AGET � AGET � AGET � AGET � AGET � AGET � AGET � 48 AsAds AGET � AGET � AGET � AGET � AGET � AGET � AGET � AGET � in total � AsAd <= 4 AGET Beam � (63 pads) �

  7. Performance of Gating Grid � Gating grid wires • – ���������������������� ��������������� ��������� GG ���� Close � Open �� • • ���������������������� Garfield ����������������� – NIM paper is accepted

  8. Trigger detectors � Active Collimator (no hit) � SBT:Start Counter (hitting) � Detector � Location � In Purpose � trigger � SBT: After Hitting � Count number of Start STQ mag. � beam and determine Counters � start timing � Beam Drift Chamber(BDC) � Active In front No hit � Reject beam Collimator � of the passing through target � outside of the target. � KATANA- After the Pulse � eject beam-like Beam � Veto � exit Height residues with Z window � <= greater than 20 -30mV � passing through the TPC Kyoto Left and Multiplic Trigger central Array � Right side � ity >= 4 � collision events � NeuLAND : Neutron detection � BDC: In beam not Reconstruct a beam Beam Drift line after included � track � Chamber � S.C. � NeuLAND � 8.5m, not Detect neutron and 30deg � included � charged light particles �

  9. Photogrammetry Measurement (Geodetic Systems, inc (GSI) http://www.geodetic.com � 1. Put reflecting point stickers on the measuring surface 2. Take pictures from several angles. 3. Analyze picture data. 4. The absolute position of point is reconstructed. 5. Absolute position determined with ~0.2mm. 6. This results will be submitted soon! �

  10. Beam & Target configurations � Purpose � δ =(N-Z)/A � Beam � Purity � Energy Target � Periods � Time Triggered � [MeV/u] [h] � Commissioning I 79 Se � 50% � ~200 � Al � Full readout check Oct. 22-23 & Oct. outside of the magnet � 29‘15 � Commissioning II 132 Sn � 50% � ~300 � nat. Sn � Trigger system check Apr. 6-10 ‘16 � inside the magnet � Xe � 108 Sn � 49% � 268.9 � 112 Sn neutron deficient δ = 0.09 � Apr. 30 - May. 4 ‘16 � 64 � 10M � Xe � 112 Sn � 44% � 270.2 � 124 Sn � reference δ = 0.15 � May. 4 - May. 6 ‘16 � 38 � 5.9M � U � 132 Sn � 57% � 268.9 � 124 Sn � neutron rich δ = 0.22 � May. 25 – May. 29 ‘16 � 57 9.5M � U � 124 Sn � 10% � 270.2 � 112 Sn � reference δ = 0.15 � May 30 – Jun. 1 ‘16 � 30 � 4.6M U d, � , ~300 Empty � Gain Calibration � Jun. 1 ‘16 � 2.5 0.28M (Z=1,2,3 A/Z=2) � 6Li � ~100 4.4 � a 110 Sb (1.5%) � 134 Sb (10%) � 108 Sn (56%) � 132 Sn (49%) �

  11. 2D & 3D Event Display � 124 Sn + 112 Sn Top View � Side View �

  12. Track Reconstruction � 1. Pulse Shape Analysis f : Fixed shape � 2. Helix tracking: 3D momentum t 0 : time at 5% of h � 1. Track separation 2. Riemann fit: 2D 3. Helix fit: 3D 4. Clustering Initialize GENFIT parameters 5. Cosmic event � 3. GENFIT: precise fitting � � Parameterization, extrapolation) 4. RAVE(Reconstruction vertices)

  13. Vertex Reconstruction � Reaction at target Before target Active target Target A. C. � Ladder � Entrance window � Background can be eliminated �

  14. Correlation between Extrapolated track from TPC and Beam at the target. � X � Each track extrapolated onto the target � Two drift chambers provide us beam position at the target � Y � Nice correlation indicates the successful operation of DAQ synchronization and vertex reconstruction Intrinsic spatial resolution is estimated to be ~ 1mm. �

  15. Centrality Trigger by Multiplicity � 30 � URQMD+G4 132Sn(300MeV/u) + 124Sn � 30 � Impact Parameter [fm] � Central Peripheral � Peripheral Central �

  16. Tracking Efficiency by KATANA_M � ����� / �� 1 � TPC ������ track ������� • >95% � KATANA_M ������������� Efficiency � Track ����������� % ���� • ������������ KATANA_M ��������� Track � • ����� 10%. ~10% � inefficiency Tracking algorism ���� Simulation • of tracking � ���������

  17. PID by TPC � PID by TPC ( 132 Sn + 124 Sn @E/A=280MeV) • gain ���� • π � � π + ������� • p, d, t, 3,4 He ������� �� π - � π + � p/Q �

  18. � Summary � S π RIT-TPC �������� MSU �������������� • ������ 132, 108, 124, 112 Sn+ 124, 112 Sn �� 2016 ������������ • ��� δ (=(N-Z)/A) ��������� 10M ����� • ����������������������������� • π - � π + � p � d � t � He �� PID ��� • TPC � Tracking Reconstruction ���������� • ����������������� • Perspectives • – Technical papers ���� – ��� PhD ���������������������

  19. Thank you for your attention �

Recommend


More recommend