fins nsler r geom ometry ry and nd desitter mo momentum
play

Fins nsler r geom ometry ry and nd deSitter mo momentum space - PowerPoint PPT Presentation

Fins nsler r geom ometry ry and nd deSitter mo momentum space Loret Niccol arXiv:1407.8143 With: Giovanni Amelino-Camelia, Leonardo Barcaroli, Giulia Gubitosi and Stefano Liberati Gali lilean Relativity Gali lilean Relativity


  1. Fins nsler r geom ometry ry and nd deSitter mo momentum space Loret Niccolò arXiv:1407.8143 With: Giovanni Amelino-Camelia, Leonardo Barcaroli, Giulia Gubitosi and Stefano Liberati

  2. Gali lilean Relativity Gali lilean Relativity Invariant (Casimir) Transformation (Boost)

  3. Special Relat ativity Special Relat ativity Invariant (Casimir) Transformation (Boost)

  4. ??? Relat ativity ??? Relat ativity Invariant (Casimir) Transformation (Boost)

  5. ??? Relat ativity ??? Relat ativity Invariant (Casimir) Transformation (Boost) ???

  6. Deformed Spe pecial l Relat ativity Deformed Spe pecial l Relat ativity κ -Poincaré algebra in bicrossproduct basis

  7. Deformed Spe pecial l Relat ativity Deformed Spe pecial l Relat ativity κ -Poincaré algebra in bicrossproduct basis Casimir Symmetry genera rators representation

  8. Curved momentum-space Curved momentum-space Non-trivial properties of Modified symmetries momentum-space geometry

  9. Curved momentum-space Curved momentum-space Non-trivial properties of Modified symmetries momentum-space geometry (Modified) Dispersion Relation obtained through In the κ -Poincaré (bicro rosspro roduct basis) case

  10. Finsl sler Geometry Finsl sler Geometry Finsler Norm ● Positive function in the tangent bundle ● Homogeneus of degree one in ẋ Velocity-dependent genera ralization of Riemannian metric Rund 1959

  11. Finsler Geometry of a a par article with MDR Finsler Geometry of a a par article with MDR Action of a fr free relativistic particle Girelli, Liberati, Sindoni, PRD 2007

  12. Finsler Geometry of a a par article with MDR Finsler Geometry of a a par article with MDR Action of a fr free relativistic particle By using Hamilton's equation We find Girelli, Liberati, Sindoni, PRD 2007

  13. Finsler Geometry of a a par article with MDR Finsler Geometry of a a par article with MDR Action of a fr free relativistic particle By using Hamilton's equation We find Girelli, Liberati, Sindoni, PRD 2007

  14. Finsl sler Geometry an and κ κ -Poincar -Poincar aré sy symmetries Finsl sler Geometry an and aré sy symmetries We apply this procedure re to the case

  15. Finsl sler Geometry an and κ κ -Poincar -Poincar aré sy symmetries Finsl sler Geometry an and aré sy symmetries We apply this procedure re to the case

  16. Finsl sler Geometry an and κ κ -Poincar -Poincar aré sy symmetries Finsl sler Geometry an and aré sy symmetries We apply this procedure re to the case

  17. Finsler spacetime metric Finsler spacetime metric In terms of momenta

  18. Finsler spacetime metric Finsler spacetime metric In terms of momenta Despite its horri rible aspect this metri ric defines some simple re relati tions: ● Its invers rse is related to the part rticle's MDR ● In terms of g momenta are simply related to velocities

  19. On the invar ariance of the Lag agran angian On the invar ariance of the Lag agran angian Edge terms

  20. On the invar ariance of the Lag agran angian On the invar ariance of the Lag agran angian Edge terms = 0

  21. On the invar ariance of the Lag agran angian On the invar ariance of the Lag agran angian Edge terms = 0 Invari riant Lagrangian

  22. Relat ative Locality and Rainbow metrics Relat ative Locality and Rainbow metrics This invariant Lagrangian suggest us to check whether Invariant t “rainbow” line element This would allow us to satisfy one of the key requirments of rainbow metri rics which is Loret, arXiv:1404.5093

  23. Geod odesic equations Geod odesic equations In terms of ζ( ẋ ):

  24. Geod odesic equations Geod odesic equations In terms of ζ( ẋ ): From the homogeneity of F( ẋ ) one can show th that the metric g ( ẋ ) satisfies

  25. Geod odesic equations Geod odesic equations In terms of ζ( ẋ ): From the homogeneity of F( ẋ ) one can show th that the metric g ( ẋ ) satisfies In terms of g ( ẋ ): Where

  26. Wordli lines and symmetries Wordli lines and symmetries In the k-Poincaré ré case We choose a parametrization

  27. Finsler Killing equation Finsler Killing equation We look for solutions and charges

  28. Finsler Killing equation Finsler Killing equation We look for solutions and charges

  29. Finsler Killing equation Finsler Killing equation We look for solutions and charges

  30. Summar ary and outlook Summar ary and outlook ● Finsler r generalization of Riemannian geometr try can be used to describe spacetime geometry seen by a particle with given (modified) dispersion re relation ● This provides a consistent framework to derive physical properties of the particle: propagation, symmetries ● Equivalent to a ‘ra rainbow’ metri ric associated to classical particles with κ -Poincaré inspired symmetries ● Can it be used to tre reat t more complicated cases, when gravity is introduced? ● How to intro roduce interactions?

Recommend


More recommend