filters and other potions
play

Filters and other potions P. Perona - Caltech MIT - 21 November - PowerPoint PPT Presentation

Filters and other potions P. Perona - Caltech MIT - 21 November 2013 what ? where Architectures Architecture 1 building train The vision black box Marble Ripe torso bananas Image(s) Grouping: image regions Surface shape, motor


  1. Filters and other potions P. Perona - Caltech MIT - 21 November 2013

  2. what ? where

  3. Architectures

  4. Architecture 1 building train The vision black box Marble Ripe torso bananas Image(s) Grouping: image regions Surface shape, motor scene depth, spatial relationships, Feature extraction: 3D motion texture stereo disparity color contrast motion flow Perceptual edgels organization: cognition Recognition, …. 2.5D sketch: surface properties boundaries, junctions, foregrnd, bckgrnd Objects, verbs, Image processing categories… [Marr ’82] Regions and surfaces

  5. features? Le Corbusier, Villa Savoye http://flickr.com/photos/ikura/1398271367/

  6. edges Le Corbusier, Villa Savoye http://www.iit.edu/~stawraf/perspx.jpg

  7. Architecture 2 [Fukushima ‘80]

  8. [DeValois ’85]

  9. Column

  10. Hypercolumn

  11. Dense sampling

  12. translation, rotation invariance [LeCun et al. 1998]

  13. scale invariance [Lowe 2004]

  14. translation, rotation, scale invariance [Hinton et al. ’12]

  15. 96 filters 6 orientations 2 center-surround 14 scale samples over 2.2 binary octaves

  16. Detection Performance Caltech pedestrians: 1M frames, 250K hand-annotated

  17. Detection Performance

  18. Detection Performance Viola & Jones ‘01 * Dalal-Triggs ‘05 Walk et al. ‘10 Dollar et al. ‘10 Dollar et al. ‘08

  19. filter technology

  20. Scale, orientation, elongation…. lots of CPU cycles

  21. how do we make computations efficient?

  22. Separability X R ( i, j ) = k ( h, k ) I ( i − h, j − k ) X X k ( h ) k 0 ( k ) I ( i − h, j − k ) R ( i, j ) = h =1: M,k =1: N h =1: M k =1: N Cost = m + n Cost = m x n [Adelson & Bergen, ’85]

  23. Separability and decomposition [Adelson & Bergen, ’85]

  24. Steerability [Freeman & Adelson, ’91]

  25. General decomposition D X k ( x, θ ) = b i ( θ ) f i ( x ) i =1 D X k ( x, y ) = f i ( x ) g i ( y ) i =1 D X k ( x, y ; θ ) = b i ( θ ) f i ( x ) g i ( y ) i =1

  26. Design?

  27. θ θ D b i ( θ ) σ i,i = k ( x ; θ ) f i ( x ) x x A = USV T

  28. Approximation D X K ( x, y ; θ ) = b i ( θ ) f i ( x, y ) i =1 R X K ( x, y ; θ ) ≈ b i ( θ ) f i ( x, y ) R ⌧ D i =1

  29. [Perona ’95]

  30. [Perona ’95]

  31. [Perona ’95]

  32. Tensor Factorization D X k ( x, y ; θ ) = b i ( θ ) f i ( x ) g i ( y ) i =1 • Not a convex problem • Gradient descent [Shy, Perona ’96]

  33. Including scale by resampling

  34. [Manduchi et al. ’98] [cfr. Simoncelli et al]

  35. Exploiting Image Statistics

  36. sampling the gradient original upsampled

  37. [Dollar et al. 2013]

  38. Gradient histograms [Dollar et al. 2013]

  39. Power law feature scaling

  40. Power law feature scaling

  41. Individual images [Dollar et al. 2013]

  42. Fast computations

  43. Fast computations [Dollar et al. 2013]

  44. Performance [Dollar et al. 2013]

  45. Conclusions • Filtering front-end • Need fine sampling of scale, orientation, … • Scalable, separable and steerable approximations • Exploiting image statistics to extrapolate • Fast and accurate detection

Recommend


More recommend