field validation database for binder testing procedures
play

Field Validation Database for Binder Testing Procedures Recommended - PowerPoint PPT Presentation

Field Validation Database for Binder Testing Procedures Recommended by NCHRP 9-10 Wilfung Martono H.U.Bahia University of Wisconsin-Madison ETG Meeting Fall 2003 Las Vegas, NV Background ! Need for Field Validation of ! Binder repeated


  1. Field Validation Database for Binder Testing Procedures Recommended by NCHRP 9-10 Wilfung Martono H.U.Bahia University of Wisconsin-Madison ETG Meeting Fall 2003 – Las Vegas, NV

  2. Background ! Need for Field Validation of ! Binder repeated creep concept for rutting ! Binder PP time sweep test concept for fatigue ! Select asphalts from MRL ! Sections with known performance ! Available binders ! 10 States -- 25 binders 2

  3. 10 States- 25 binders ! Mississippi : 6- Control , multigrade, CRM, 3 PMAs ! Missouri : 4- Control, Oxidized and PMAs ! Pennsylvania :4- AC20, 3 PMAs ! Nebraska : 3- all modified F1,F2B, F3C ! California : 2– AR8000, 6A/LLP ! Alberta : 2- 200/300p, LTPP21 modified ! Kansas : 2- AC10, PMA AC5 ! Nevada : 2- AC 20 and AC-20 P ! Texas : 2– AC5 and AC 10 Modified 3

  4. Binder Rutting Test (DSR) In this test loading of 25 Pa is applied for 1 sec And removed for 9 sec. The accumulated Strain is measured and the viscous component Is estimated under steady state condition. 0.20 Accumulated Strain Test data Fit 0.15 Strain (mm/mm) 0.10 0.05 0.00 0 10 Cycles 20 30 Time (seconds) 4

  5. Rutting Measurements Final Reported G*/sin( δ δ ) η η ss δ δ η η No Project Binder TT Notes strain Rutting (C) (kPa) (Pa.s) (mm/mm) (mm) LTTP 15 KS AC-10 58 4.55 5.79E+02 13.701 0.548 ID 16 KS AC-10 70 0.94 5.79E+02 81.045 200210 PMAC AC- 17 KS 5 58 5.40 2.49E+03 3.121 0.365 PMAC AC- 18 KS 5 70 1.90 3.63E+02 21.165 200902 5

  6. G* Sin δ Compared to η ss y = 492.89x + 571.58 40,000 2 = 0.3147 R 35,000 30,000 , Pa-s 25,000 η ss 20,000 η η η 15,000 10,000 5,000 0 G*/Sin δ δ δ δ , Kpa 0 15 30 45 6

  7. Correlation of η ss to Field Rutting- 70 C Data MS 70C 12 Field Rutting Vs. η η η η ss MO 70C 10 NV 70C y = -2.3532Ln(x) + 20.804 Field Rutting (in mm) KS 70C 2 = 0.9502 R 8 6 y = -1.6001Ln(x) + 15.22 2 = 0.4943 R 4 2 0 0 1000 2000 3000 4000 5000 6000 η ss η η η 7

  8. Correlation of η ss to Field Rutting- 58 C Data MS 58C 12 Field Rutting Vs. η η ss η η MO 58C 10 NV 58C Field Rutting (in mm) -0.3943 y = 131.38x KS 58C 2 = 0.9836 R 8 6 -0.42 y = 125.89x 2 = 0.4587 R 4 2 0 0 5000 10000 15000 20000 25000 η ss η η η 8

  9. Correlation of G* .sind to Field Rutting- 58 C Data MS 58C 12 Field Rutting Vs. G*/sin ( δ) δ) δ) δ) MO 58C 10 NV 58C y = 18.189x -0.4679 Field Rutting (in mm) R 2 = 0.9182 KS 58C 8 6 4 2 y = 322.81x -1.609 R 2 = 0.7286 0 0 10 20 30 40 50 G*/sin ( δ) δ) δ) δ) 9

  10. Binder Fatigue Test (DSR) 6.0E+06 G*, G*.sin(d) Vs. Time 5.0E+06 4.0E+06 G* (in Pa) G* (Complex Modulus) 3.0E+06 G*.sin(d) 2.0E+06 ` 1.0E+06 0.0E+00 0.0E+00 2.0E+02 4.0E+02 6.0E+02 8.0E+02 1.0E+03 1.2E+03 1.4E+03 1.6E+03 Time (in s) 10

  11. Binder Fatigue Damage Analysis (Controlled Stress) No Damage-- I nitiation-- Propagation 4500 Dissipated Energy Ratio (DER) 4000 3500 3000 2500 2000 1500 1 1000 500 N20 Np 0 0 2000 4000 6000 8000 No. of Cycles 11

  12. Binder Fatigue Test (DSR) 3.0E+04 Dissipated Energy Ratio 2.5E+04 2.0E+04 N20 1.5E+04 N10 1.0E+04 5.0E+03 Np 0.0E+00 0.0E+00 1.0E+04 2.0E+04 3.0E+04 4.0E+04 5.0E+04 6.0E+04 Number of Cycles 12

  13. Binder Fatigue Results No State Binder TT Stress G* ini d ini G*sin(d) (kPa) (kPa) (kPa) 1 MS Styrelf 25 274.00 7.75E+03 49.20 1.02E+04 25 342.50 6.71E+03 50.60 8.68E+03 2 MS Rouse Rubber 25 204.00 8.87E+03 45.20 1.25E+04 25 3 MS Control 25 274.50 1.46E+04 45.20 2.06E+04 25 366.00 1.35E+04 46.40 1.86E+04 4 MS Multigrade 25 280.50 1.57E+04 41.10 2.39E+04 γ γ γ γ 2 γ γ γ γ 25 374.00 1.45E+04 42.60 2.14E+04 2 γ 1 γ γ γ τ τ τ τ 2 γ γ γ γ τ τ τ τ τ τ τ τ 1 τ τ τ τ 1 High 2 High Low Low 1 Stress Stress Stress Stress 13

  14. Example of Fatigue Analysis No State Binder Wi ini Np Np10 Np20 Nf (kPa) (cycles) 1 MS Styrelf 23.04 83,226 86,050 103,764 116,400 42.44 5,479 1,636 6,273 7,800 Rouse 2 Rubber 10.46 72,708 67,925 90,479 105,000 3 Control 11.50 61,411 67,463 74,857 81,400 22.57 16,561 17,244 20,610 23,000 4 Multigrade 10.35 89,925 96,684 110,746 122,600 20.51 14,748 14,367 18,431 21,000 14

  15. Estimating Fatigue at a given Wi value 6.00E+04 PG 64-28 Unmod PG 64-28 Mod PG 76-22 Mod 5.00E+04 PG 76-22 Oxidized Number of cycles to 50% Gini 4.00E+04 3.00E+04 2.00E+04 1.00E+04 0.00E+00 0.00 2.00 4.00 6.00 8.00 10.00 Strain (in %) 15

  16. Fatigue Analysis Results Np 20 at Wi No State Binder K1 K2 22.5 kPa 1 MS Styrelf 2.0E+11 -4.5925 1.23E+05 1 Rouse 2 Rubber 2 3 Control 8.0E+06 -1.9135 2.07E+04 3 4 Multigrade 5.0E+07 -2.6212 1.43E+04 5 Cryopolymer 4 6 Seal-O-Flux 3.0E+08 -2.9531 3.05E+04 16

  17. Effect of Binder Type and Testing Conditions on Fatigue 1.E+06 y = 3E+06x -1.7682 Effect of R 2 = 0.6974 Binder Type 1.E+05 Np20 (in cycles) 1.E+04 1.E+03 Effect of Testing Stress 1.E+02 1.E+00 1.E+01 1.E+02 Wi (in kPa) 17

  18. No Correlation to G* sind 400,000 Cycles to Failure, Nf 300,000 y = 2.4045x + 39652 R 2 = 0.0195 200,000 100,000 0 0 5000 10000 15000 20000 25000 30000 G*.sin � � � � 18

  19. Example of Strain Effect on Analysis- Missouri Sections 1.E+07 PG 64-28 UnMod PG 64-28 Mod PG 76-22 Mod PG 76-22 Oxidized 1.E+06 Number of cycles to failure 1.E+05 1.E+04 1.E+03 1.E+00 1.E+01 1.E+02 Strain (in %) 19

  20. Fatigue Analysis Method is very Important for Ranking 1.E+07 PG 64-28 UnMod PG 64-28 Mod PG 76-22 Mod Using Strain PG 76-22 Oxidized 1.E+06 Number of cycles to failure PG 64-28 Unmod 5.E+04 1.E+05 PG 64-28 Mod PG 76-22 Mod PG 76-22 Oxidized 4.E+04 1.E+04 3.E+04 Np20 1.E+03 1.E+00 1.E+01 1.E+02 Strain (in %) 2.E+04 1.E+04 Using Wi 0.E+00 0.E+00 1.E+04 2.E+04 3.E+04 4.E+04 5.E+04 6.E+04 7.E+04 8.E+04 9.E+04 20 Wi ini (in Pa)

  21. Final Remarks ! Field Validation is necessary for ! Verification ! Deriving Specification limits ! Rutting parameter appears promising ! RTFO aging effects should be studied ! Fatigue is more complicated ! Highly dependent on temperature ! Power-law relationship- K1 and K2 are needed for analysis ! Pavement structure condition 21

  22. Future Work ! Field performance data ! ETG can/should continue this effort ! Please send comments to: ! Dr. Ed Harrigan – NCHRP 22

  23. 23 this Opportunity Thank You for Questions !

Recommend


More recommend