fast sampling and counting sat solutions in the local
play

Fast sampling and counting -SAT solutions in the local lemma regime - PowerPoint PPT Presentation

Fast sampling and counting -SAT solutions in the local lemma regime Weiming Feng Nanjing University Joint work with: Heng Guo (University of Edinburgh) Yitong Yin (Nanjing University) Chihao Zhang (Shanghai Jiao Tong University)


  1. Fast sampling and counting 𝑙 -SAT solutions in the local lemma regime Weiming Feng Nanjing University Joint work with: Heng Guo (University of Edinburgh) Yitong Yin (Nanjing University) Chihao Zhang (Shanghai Jiao Tong University) Online Seminar Institute of Computing Technology, Chinese Academy of Sciences

  2. Conjunctive normal form (CNF) β€’ Instance : a formula Ξ¦ = (π‘Š, 𝐷) , for example clause Ξ¦ = 𝑦 ! ∨ ¬𝑦 " ∨ 𝑦 # ∧ 𝑦 ! ∨ 𝑦 " ∨ 𝑦 $ ∧ 𝑦 # ∨ ¬𝑦 $ ∨ ¬𝑦 % π‘Š = {𝑦 ! , 𝑦 " , 𝑦 # , 𝑦 $ , 𝑦 % }: set of Boolean variables; 𝐷 : set of clauses. β€’ SAT solutions : an assignment of variables in π‘Š s.t. 𝚾 = true . β€’ Fundamental computational tasks for CNF formula: β€’ Decision : Does SAT solution exist? NP-Complete problem [Cook 1971, Levin 1973]. β€’ Counting : How many SAT solutions? #P-Complete problem [Valiant 1979].

  3. 𝑙, 𝑒 -CNF formula Ξ¦ = (π‘Š, 𝐷) β€’ Each clause contains 𝑙 Boolean variables. β€’ Each variable belongs to at most 𝑒 clauses, e.g. max degree ≀ 𝒆 . Example: (3,2)-CNF formula 𝑦 ! ∨ ¬𝑦 " ∨ 𝑦 # ∧ 𝑦 ! ∨ 𝑦 " ∨ 𝑦 $ ∧ 𝑦 # ∨ ¬𝑦 $ ∨ ¬𝑦 % LovΓ‘sz Local Lemma (LLL) Suppose a ( 𝑙, 𝑒 )-CNF formula satisfies 𝒍 ≳ 𝐦𝐩𝐑 𝒆 (𝑙 β‰₯ log 𝑒 + log 𝑙 + 𝐷) . Existence [ErdΕ‘s, LovΓ‘sz, 1975] β€’ If each variable takes a value in {true,false} uniformly and independently !" 1 Pr all clauses are satis?ied β‰₯ 1 βˆ’ > 0, 2𝑒𝑙 which implies the 𝑙 -SAT solution must exist ; Construction [Moser, Tardos, 2010] β€’ a 𝑙 -SAT solution can be constructed in expected time 𝑃 π‘œπ‘’π‘™ .

  4. Sampling & counting 𝑙 -SAT solutions β€’ Input: a 𝑙, 𝑒 -CNF formula Ξ¦ = (π‘Š, 𝐷) with π‘Š = π‘œ , and error bound πœ— > 0 . β€’ Almost uniform sampling: generate a random SAT solution π‘Œ ∈ true, false % s.t. the total variation distance is at most πœ— , 𝑒 &% π‘Œ, 𝜈 = 1 ) Pr π‘Œ = 𝜏 βˆ’ 𝜈(𝜏) ≀ πœ— 2 # '∈ true,false 𝜈 : the uniform distribution of all 𝑙 -SAT solutions.

  5. Sampling & counting 𝑙 -SAT solutions β€’ Input: a 𝑙, 𝑒 -CNF formula Ξ¦ = (π‘Š, 𝐷) with π‘Š = π‘œ , and error bound πœ— > 0 . β€’ Almost uniform sampling: generate a 𝑙 -SAT solution π‘Œ ∈ true, false % s.t. the total variation distance 𝑒 &% π‘Œ, 𝜈 ≀ πœ—, 𝜈 : the uniform distribution of all 𝑙 -SAT solutions. β€’ Approximate counting: estimate the number of 𝑙 -SAT solutions, e.g. output 1 βˆ’ πœ— π‘Ž ≀ 9 𝒂 ≀ 1 + πœ— π‘Ž, π‘Ž = the number of 𝑙 -SAT solutions. Self-reduction [Jerrum, Valiant, Vazirani 1986] Almost Uniform Approximate Sampling Counting Simulated annealing [Ε tefankovič et al. 2009]

  6. Work Regime Running time/lower bound Technique Monotone CNF [1] Markov chain Monte Carlo poly 𝑒𝑙 π‘œ log π‘œ Hermon et al.’19 𝑙 ≳ 2 log 𝑒 (MCMC) 𝑑 β‰₯ min log 𝑒𝑙 , 𝑙/2 [2] poly 𝑒𝑙 π‘œ Guo et al.’17 Partial rejection sampling 𝑙 ≳ 2 log 𝑒 π‘œ $%&'(!)) Moitra’17 𝑙 ≳ 60 log 𝑒 Linear programming NP-hard BezΓ‘kovΓ‘ et al.’15 𝑙 ≀ 2 log 𝑒 βˆ’ 𝐷 - Table: previous results for sampling SAT solutions of 𝑙, 𝑒 -CNF formulas [1] Monotone CNF: all variables appear positively, e.g. 𝛸 = 𝑦 ! ∨ 𝑦 " ∨ 𝑦 # ∧ 𝑦 " ∨ 𝑦 $ ∨ 𝑦 % ∧ 𝑦 # ∨ 𝑦 $ ∨ 𝑦 & . [2] s: two dependent clauses share at least 𝑑 variables. Open Problem: Can we sample general 𝑙, 𝑒 -CNF solutions such that the threshold down to 𝑙 ≳ 2 log 𝑒 ; β€’ the running time poly(𝑒𝑙) 1 𝑃 (π‘œ) . β€’

  7. Our result Work Regime Running time/lower bound Technique Monotone CNF poly 𝑒𝑙 π‘œ log π‘œ Hermon et al.’19 MCMC 𝑙 ≳ 2 log 𝑒 𝑑 β‰₯ min log 𝑒𝑙 , 𝑙/2 poly 𝑒𝑙 π‘œ Guo et al.’17 Partial rejection sampling 𝑙 ≳ 2 log 𝑒 π‘œ $%&'(!)) Moitra’17 𝑙 ≳ 60 log 𝑒 Linear programming NP-hard BezΓ‘kovΓ‘ et al.’15 𝑙 ≀ 2 log 𝑒 βˆ’ 𝐷 - ; 𝒍 ≳ πŸ‘πŸ 𝐦𝐩𝐑 𝒆 𝑷(𝒆 πŸ‘ 𝒍 πŸ’ 𝒐 𝟐.𝟏𝟏𝟏𝟏𝟏𝟐 ) This work MCMC Table: results for sampling SAT solutions of 𝑙, 𝑒 -CNF formulas

  8. Main theorem (this work) For any sufficiently small πœ‚ < 2 EFG , any (𝑙, 𝑒) -CNF formula satisfying 𝑙 β‰₯ 20 log 𝑒 + 20 log 𝑙 + 3 log 1 πœ‚ , β€’ sampling algorithm (main algorithm) 𝑃 𝑒 F 𝑙 H π‘œ IJK ; draw almost uniform random 𝑙 -SAT solution in time D β€’ counting algorithm (by simulated annealing reduction) 𝑃 𝑒 H 𝑙 H π‘œ FJK ; count #𝑙 -SAT solutions approximately in time D

  9. Classic Glauber dynamics (Gibbs sampling) Start from an arbitrary solution 𝑍 ∈ π‘ˆ, 𝐺 % ; 𝑦 $ 𝑦 ! true For each 𝑒 from 1 to π‘ˆ do 𝑦 % 𝑦 " 𝑦 ' false β€’ Pick 𝑀 ∈ π‘Š uniformly at random; 𝑦 & 𝑦 # β€’ Resample 𝑍 N ∼ (β‹…βˆ£ 𝑍 %\N ) ; (𝑦 ! ∨ ¬𝑦 " ∨ 𝑦 # ) ∧ (𝑦 " ∨ 𝑦 ' ∨ 𝑦 % ) ∧ (𝑦 $ ∨ ¬𝑦 % ∨ 𝑦 & )

  10. Classic Glauber dynamics (Gibbs sampling) Start from an arbitrary solution 𝑍 ∈ π‘ˆ, 𝐺 % ; 𝑦 $ 𝑦 ! true For each 𝑒 from 1 to π‘ˆ do 𝑦 % 𝑦 " 𝑦 ' false β€’ Pick 𝑀 ∈ π‘Š uniformly at random; 𝑦 & 𝑦 # β€’ Resample 𝑍 N ∼ (β‹…βˆ£ 𝑍 %\N ) ; (𝑦 ! ∨ ¬𝑦 " ∨ 𝑦 # ) ∧ (𝑦 " ∨ 𝑦 ' ∨ 𝑦 % ) ∧ (𝑦 $ ∨ ¬𝑦 % ∨ 𝑦 & )

  11. Classic Glauber dynamics (Gibbs sampling) Start from an arbitrary solution 𝑍 ∈ π‘ˆ, 𝐺 % ; 𝑦 $ 𝑦 ! true For each 𝑒 from 1 to π‘ˆ do 𝑦 % 𝑦 " 𝑦 ' T/F? false β€’ Pick 𝑀 ∈ π‘Š uniformly at random; 𝑦 & 𝑦 # β€’ Resample 𝑍 N ∼ 𝜈 N (β‹…βˆ£ 𝑍 %\N ) ; (𝑦 ! ∨ ¬𝑦 " ∨ 𝑦 # ) ∧ (𝑦 " ∨ 𝑦 ' ∨ 𝑦 % ) ∧ (𝑦 $ ∨ ¬𝑦 % ∨ 𝑦 & )

  12. Classic Glauber dynamics (Gibbs sampling) Start from an arbitrary solution 𝑍 ∈ π‘ˆ, 𝐺 % ; 𝑦 $ 𝑦 ! true For each 𝑒 from 1 to π‘ˆ do 𝑦 % 𝑦 " 𝑦 ' F! false β€’ Pick 𝑀 ∈ π‘Š uniformly at random; 𝑦 & 𝑦 # β€’ Resample 𝑍 N ∼ 𝜈 N (β‹…βˆ£ 𝑍 %\N ) ; (𝑦 ! ∨ ¬𝑦 " ∨ 𝑦 # ) ∧ (𝑦 " ∨ 𝑦 ' ∨ 𝑦 % ) ∧ (𝑦 $ ∨ ¬𝑦 % ∨ 𝑦 & )

  13. Connectivity barrier (toy example) β€’ (𝑙, 𝑒) -CNF formula Ξ¦ = (π‘Š, 𝐷) with π‘Š = 𝑦 I , 𝑦 F , … 𝑦 P : Ξ¦ = 𝐷 I ∧ 𝐷 F ∧ β‹― ∧ 𝐷 P . 𝐷 I = (¬𝑦 I ∨ 𝑦 F ∨ 𝑦 H ∨ β‹― ∨ 𝑦 P ) forbids 100 … 0 𝐷 F = (𝑦 I ∨ ¬𝑦 F ∨ 𝑦 H ∨ β‹― ∨ 𝑦 P ) forbids 010 … 0 𝐷 P = (𝑦 I ∨ 𝑦 F ∨ 𝑦 H ∨ β‹― ∨ ¬𝑦 P ) forbids 000 … 1 β€’ Any assignment π‘Œ ∈ 0,1 % with π‘Œ I = 1 is infeasible. β€’ All false solution 𝟏 is disconnected with others. 10…0 Other Solutions 00…0 01…0 00…1

  14. β€œthe solution space (and hence the natural Markov chain) is not connected” β€’ Glauber dynamics : random walk over solution space via local update. β€’ Local Markov chain : one of the most fundamental approach for sampling: uniform graph coloring weighted matching/independent set Ising/spin system bases of a matroid We are here ! rapid mixing not mixing slow mixing For sampling CNF solutions, the MCMC approach meets the connectivity barrier . Mathematics and Computation [Wigderson’19]

  15. Bypass the connectivity barrier Work Regime Running time Technique Monotone CNF Hermon et monotone CNF poly 𝑒𝑙 π‘œ log π‘œ MCMC al.’19 𝑙 ≳ 2 log 𝑒 𝑑 β‰₯ min log 𝑒𝑙 , 𝑙/2 Guo, Jerrum, Partial rejection heavy intersection poly 𝑒𝑙 π‘œ Liu’17 𝑙 ≳ 2 log 𝑒 sampling π‘œ !"#$(&') constant 𝒆 and 𝒍 Moitra’17 𝑙 ≳ 60 log 𝑒 Linear programming Non-MCMC approach Technique Motivation: Can MCMC approach bypass the connectivity barrier ?

  16. Our technique: projection Source: https://www.shadowmatic.com/presskit/images/IMG_0650.png Projecting from a high dimension to a lower dimension to improve connectivity

  17. Construct a good subset of variables 𝑁 βŠ† π‘Š Run Glauber dynamics on projected distribution 𝜈 + to draw sample π‘Œ ∼ 𝜈 + Start from a uniform random π‘Œ ∈ true ,false ) ; For each 𝑒 from 1 to π‘ˆ Pick a variable 𝑀 ∈ 𝑁 uniformly at random; β€’ π’˜ Resample π‘Œ * ∼ 𝜈 * (β‹… |π‘Œ )\* ) ; β€’ Return π‘Œ ∈ true ,false ) . T/F? Draw sample 𝑍 ∼ 𝜈 ,\+ (β‹… |π‘Œ) from the conditional distribution There exists an efficiently constructible subset 𝑁 βŠ† π‘Š such that: computing exact distr. the Glauber dynamics on 𝜈 + is rapidly mixing , β€’ can be #P-hard the Glauber dynamics on 𝜈 + can be implemented efficiently (draw π‘Œ . ∼ 𝜈 . (β‹… |π‘Œ +\. ) ), β€’ sampling assignment for π‘Š\𝑁 can be implemented efficiently (draw 𝑍 ∼ 𝜈 ,\+ (β‹… |π‘Œ) ). β€’

  18. Construct a good subset of variables 𝑁 βŠ† π‘Š Run Glauber dynamics on projected distribution 𝜈 + to draw sample π‘Œ ∼ 𝜈 + Start from a uniform random π‘Œ ∈ true ,false ) ; For each 𝑒 from 1 to π‘ˆ Pick a variable 𝑀 ∈ 𝑁 uniformly at random; β€’ π’˜ Resample π‘Œ * ∼ 𝜈 * (β‹… |π‘Œ )\* ) ; β€’ Return π‘Œ ; T/F? Draw sample 𝑍 ∼ 𝜈 ,\+ (β‹… |π‘Œ) from the conditional distribution Our Tasks : Construct such a good subset 𝑁 βŠ† π‘Š . β€’ Show that the Glauber dynamics on 𝜈 + is rapidly mixing . β€’ Given assignment on 𝑁 , draw samples efficiently from the conditional distribution. β€’

Recommend


More recommend