fast polarization for processes with memory
play

Fast Polarization for Processes with Memory Boaz Shuval and Ido Tal - PowerPoint PPT Presentation

Fast Polarization for Processes with Memory Boaz Shuval and Ido Tal Andrew and Erna Viterbi Department of Electrical Engineering Technion Israel Institute of Technology Haifa, 32000, Israel June 2018 1/21 In this talk Setting :


  1. Fast Polarization for Processes with Memory Boaz Shuval and Ido Tal Andrew and Erna Viterbi Department of Electrical Engineering Technion — Israel Institute of Technology Haifa, 32000, Israel June 2018 1/21

  2. In this talk Setting : binary-input, symmetric, memoryless channel 2/21

  3. In this talk Setting : binary-input, symmetric, memoryless channel 2/21

  4. In this talk Setting : binary-input, symmetric, memoryless channel 2/21

  5. In this talk Setting : binary-input, symmetric, memoryless channel 2/21

  6. In this talk Setting : binary-input, symmetric, ✭✭✭✭✭✭ ❤❤❤❤❤❤ ✭ memoryless channel ❤ 2/21

  7. Polar codes: [Arıkan:09], [ArıkanTelatar:09], [S ¸as ¸o˘ glu+:09], [KoradaUrbanke:10], [HondaYamamoto:13] ◮ Setting : Memoryless i.i.d. process ( X i , Y i ) N i = 1 ◮ For simplicity : Assume X i binary 1 = X N 1 · G N ◮ Polar transform : U N ◮ Index sets : � 1 ) < 2 − N β � i : H ( U i | U i − 1 Λ N = , Y N Low entropy: 1 � 1 ) > 1 − 2 − N β � i : H ( U i | U i − 1 Ω N = , Y N High entropy: 1 ◮ Polarization : 1 lim N | Λ N | = 1 − H ( X 1 | Y 1 ) N →∞ 1 lim N | Ω N | = H ( X 1 | Y 1 ) N →∞ 3/21

  8. Polar codes: Optimal rate for: ◮ Coding for non-symmetric memoryless channels ◮ Coding for memoryless channels with non-binary inputs ◮ (Lossy) compression of memoryless sources Question ◮ How to handle memory? 4/21

  9. A framework for memory ◮ Process : ( X i , Y i , S i ) N i = 1 ◮ Finite number of states : S i ∈ S , where |S| < ∞ ◮ Hidden state : S i is unknown to encoder and decoder ◮ Probability distribution : P ( x i , y i , s i | s i − 1 ) ◮ Stationary : same for all i ◮ Markov : P ( x i , y i , s i | s i − 1 ) = P ( x i , y i , s i |{ x j , y j , s j } j < i ) ◮ State sequence : aperiodic and irreducible Markov chain 5/21

  10. Example 1 ◮ Model : Finite state channel P s ( y | x ) , s ∈ S ◮ Input distribution : X i i.i.d. and independent of state ◮ State transition : π ( s i | s i − 1 ) ◮ Distribution : P ( x i , y i , s i | s i − 1 ) = P ( x i ) π ( s i | s i − 1 ) P s i ( y i | x i ) 6/21

  11. Example 2 ◮ Model : ISI + noise Y i = h 0 X i + h 1 X i − 1 + · · · + h m X i − m + noise ◮ Input : X i has memory P ( x i | x i − 1 , x i − 2 , . . . , x i − m , x i − m − 1 ) ◮ State : � � S i = · · · X i X i − 1 X i − m ◮ Distribution : For x i , s i , s i − 1 compatible, P ( x i , y i , s i | s i − 1 ) = P noise ( y i | h T s i ) · P ( x i | s i − 1 ) 7/21

  12. Example 3 ◮ Model : ( d , k ) -RLL constrained system with noise ( 1 , ∞ ) -RLL Constraint 1 0 0 8/21

  13. Example 3 ◮ Model : ( d , k ) -RLL constrained system with noise ( 1 , ∞ ) -RLL Constraint 1 X N Y N 1 1 BSC ( p ) 0 0 8/21

  14. Example 3 ◮ Model : ( d , k ) -RLL constrained system with noise ( 1 , ∞ ) -RLL Constraint 1 X N Y N 1 − α 1 1 BSC ( p ) α 0 1 0 state Markov chain 0 / 0 1 / 0 α ( 1 − p ) ( 1 − α )( p ) 1 / 1 ( 1 − α ) ( 1 − ) p P ( x i , y i , s i | s i − 1 ) ( 1 1 − ) p 0 / 0 1 ( p ) α ( p ) 1 / 0 0 / 1 8/21

  15. Polar codes: [S ¸as ¸o˘ glu:11], [S ¸as ¸o˘ gluTal:16], [ShuvalTal:17] ◮ Setting : Process ( X i , Y i , S i ) N i = 1 with memory, as above ◮ Hidden state : State unknown to encoder and decoder 1 = X N 1 · G N ◮ Polar transform : U N U N 1 are neither independent, nor identically distributed ◮ Index sets : � 1 ) < 2 − N β � i : H ( U i | U i − 1 Λ N = , Y N Low entropy: 1 � 1 ) > 1 − 2 − N β � i : H ( U i | U i − 1 Ω N = , Y N High entropy: 1 ◮ Polarization : 1 lim N | Λ N | = 1 − H ⋆ ( X | Y ) N →∞ 1 lim N | Ω N | = H ⋆ ( X | Y ) N →∞ lim N →∞ 1 N H ( X N 1 | Y N 1 ) 9/21

  16. Achievable rate ◮ Achievable rate : In all examples, R approaches 1 I ⋆ ( X ; Y ) = lim NI ( X N 1 ; Y N 1 ) N →∞ ◮ Also lossy compression of a source with memory ◮ Successive cancellation : [Wang+:15] ◮ Without state estimation! 10/21

  17. Three parameters ◮ Joint distribution P ( x , y ) ◮ For simplicity: X ∈ { 0 , 1 } ◮ Parameters : H ( X | Y ) = − � x , y P ( x , y ) log P ( x | y ) Entropy � Z ( X | Y ) = 2 � P ( 0 , y ) P ( 1 , y ) Bhattacharyya y K ( X | Y ) = � y | P ( 0 , y ) − P ( 1 , y ) | T.V. distance ◮ Connections : H ≈ 0 ⇐ ⇒ Z ≈ 0 ⇐ ⇒ K ≈ 1 H ≈ 1 ⇐ ⇒ Z ≈ 1 ⇐ ⇒ K ≈ 0 11/21

  18. Three processes For n = 1 , 2 , . . . { X i , Y i , S i } ◮ N = 2 n 1 = X N ◮ U N 1 G N { X i , Y i } ◮ Pick B n ∈ { 0 , 1 } uniform, i.i.d. ◮ Random index from { 1 , 2 , . . . , N } i = 1 + � B 1 B 2 · · · B n � 2 ◮ Processes : H n = H ( U i | U i − 1 , Y N 1 ) Entropy 1 Z n = Z ( U i | U i − 1 , Y N 1 ) Bhattacharyya 1 K n = K ( U i | U i − 1 , Y N 1 ) T.V. distance 1 12/21

  19. Proof — memoryless case Slow polarization Fast polarization � B n + 1 = 0 2 Z n H n ∈ ( ǫ, 1 − ǫ ) Z n + 1 ≤ B n + 1 = 1 Z 2 n | H n + 1 − H n | > 0 1 N | Λ N | − n →∞ 1 − H ( X 1 | Y 1 ) − − → Low entropy set New � B n + 1 = 0 K 2 K n + 1 ≤ n B n + 1 = 1 2 K n 1 N | Ω N | − n →∞ H ( X 1 | Y 1 ) − − → High entropy set 13/21

  20. ❍❍ ✟ Proof — memory ✟✟ less case [S ❍ ¸as ¸o˘ gluTal:16], [ShuvalTal:17] { X i , Y i , S i } Slow polarization Fast polarization { X i , Y i } � 2 ψ Z n B n + 1 = 0 H n ∈ ( ǫ, 1 − ǫ ) Z n + 1 ≤ ψ Z 2 B n + 1 = 1 n | H n + 1 − H n | > 0 1 N | Λ N | − n →∞ 1 − H ⋆ ( X | Y ) − − → Low entropy set New � ψ ˆ B n + 1 = 0 K 2 1 ˆ ψ = ψ ( 0 ) = max K n + 1 ≤ n π ( s ) 2 ˆ B n + 1 = 1 s K n π : stationary state distribution 1 N | Ω N | − n →∞ H ⋆ ( X | Y ) − − → High entropy set 14/21

  21. Fast polarization to high entropy set Ω N ◮ Memoryless case : ◮ Parameter evolution inequality hinges on independence: P ( x 2 N 1 , y 2 N 1 ) = P ( x N 1 , y N 1 ) · P ( x 2 N N + 1 , y 2 N N + 1 ) ◮ Memory case : ◮ Force independence: condition on middle state S N P ( x 2 N 1 , y 2 N 1 | s N ) = P ( x N 1 , y N 1 | s N ) · P ( x 2 N N + 1 , y 2 N N + 1 | s N ) ◮ New processes : ˆ H n = H ( U i | U i − 1 , Y N 1 , S 0 , S N ) 1 ˆ K n = K ( U i | U i − 1 , Y N 1 , S 0 , S N ) 1 15/21

  22. Polarization of K n (memoryless case) 1 = X N U N 1 · G N V N 1 = X 2 N N + 1 · G N Q i = ( U i − 1 1 ) , Y N ◮ Memoryless assumption : 1 R i = ( V i − 1 N + 1 ) , Y 2 N 1 P ( u i , v i , q i , r i ) = P ( u i , q i ) · P ( v i , r i ) ◮ Notation : T i = U i + V i ◮ One step polarization : � K ( T i | Q i , R i ) B n + 1 = 0 ‘ − ’ transform K n + 1 = K ( V i | T i , Q i , R i ) B n + 1 = 1 ‘ + ’ transform ◮ Recall : � K ( X | Y ) = | P ( 0 , y ) − P ( 1 , y ) | y 16/21

  23. Polarization of K n (memoryless case), ‘ − ’ transform � K n + 1 = | P T i , Q i , R i ( 0 , q , r ) − P T i , Q i , R i ( 1 , q , r ) | q , r � � 1 � � � � = P ( v , r )( P ( v , q ) − P ( v + 1 , q )) � � � � � � q , r v = 0 � �� � �� � � � = P ( 0 , q ) − P ( 1 , q ) P ( 0 , r ) − P ( 1 , r ) � � � � q , r � = | P ( 0 , q ) − P ( 1 , q ) | · | P ( 0 , r ) − P ( 1 , r ) | q , r � � = | P ( 0 , q ) − P ( 1 , q ) | · | P ( 0 , r ) − P ( 1 , r ) | q r = K 2 n , 17/21

  24. Polarization of K n (memoryless case), ‘ + ’ transform � � � K n + 1 = � P T i , V i , Q i , R i ( t , 0 , q , r ) − P T i , V i , Q i , R i ( t , 1 , q , r ) � t , q , r � = | P ( t , q ) P ( 0 , r ) − P ( t + 1 , q ) P ( 1 , r ) | t , q , r ( ∗ ) ≤ 1 � P ( q ) | P ( 0 , r ) − P ( 1 , r ) | + P ( r ) | P ( t , q ) − P ( t + 1 , q ) | 2 t , q , r = 1 | P ( 0 , r ) − P ( 1 , r ) | + 1 � � | P ( t , q ) − P ( t + 1 , q ) | 2 2 t , r t , q = 2K n , Identity for ( ∗ ) : For any a , b , c , d : ab − cd = ( a + c )( b − d ) + ( b + d )( a − c ) 2 18/21

  25. Polarization of ˆ K n (memory) ◮ Follows steps of memoryless case ◮ Requires additional inequalities ◮ Inequality I : For states s 0 , s N , s 2 N ∈ S , P ( s 0 , s N , s 2 N ) = P ( s 0 , s N ) · P ( s N , s 2 N ) P ( s N ) ≤ ψ · P ( s 0 , s N ) · P ( s N , s 2 N ) where 1 ψ = max π ( s ) s ◮ Inequality II : For f , g ≥ 0, � � � g ( s ′ f ( s N ) g ( s N ) ≤ f ( s N ) N ) s ′ s N s N N 19/21

  26. Connections Extreme Values Ordering ˆ H ≈ 0 ⇔ Z ≈ 0 ⇔ K ≈ 1 H n ≤ H n ˆ Z n ≤ Z n H ≈ 1 ⇔ Z ≈ 1 ⇔ K ≈ 0 ˆ K n ≥ K n ˆ ( · ) processes also for All six processes ( H n , ˆ H n , Z n , ˆ Z n , K n , ˆ K n ) polarize fast both to 0 and 1 with any β < 1 / 2 20/21

  27. Summary ◮ A general framework for memory: P ( x i , y i , s i | s i − 1 ) ◮ Memory allowed in both source and channel ◮ State sequence S i ◮ Hidden ◮ Stationary ◮ Finite state Markov ◮ Aperiodic and irreducible ◮ Achieve rate I ⋆ ( X ; Y ) through polar codes ◮ No change to polarization exponent ( β < 1 / 2) 21/21

Recommend


More recommend