exploring the metric space of collider events
play

Exploring The (Metric) Space of Collider Events MIT CTP - PowerPoint PPT Presentation

Exploring The (Metric) Space of Collider Events MIT CTP QCD/LHC/BSM/DM Journal Club Eric M. Metodiev Center for Theoretical Physics Massachusetts Institute of T echnology Joint work with Patrick Komiske and Jesse Thaler [1902.02346] March 8,


  1. Exploring The (Metric) Space of Collider Events MIT CTP QCD/LHC/BSM/DM Journal Club Eric M. Metodiev Center for Theoretical Physics Massachusetts Institute of T echnology Joint work with Patrick Komiske and Jesse Thaler [1902.02346] March 8, 2019 1

  2. Outline When are two events similar? Part I The Energy Mover’s Distance Introduction Movie Time Observables Quantifying event modifications Part II Applications Exploring the Space of Events Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 2

  3. Outline When are two events similar? Part I The Energy Mover’s Distance Introduction Movie Time Observables Quantifying event modifications Part II Applications Exploring the Space of Events Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 3

  4. When are two events similar? Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 4

  5. When are two collider events similar? How an event gets its shape Detection ' Hadronization hadrons $ ± & ± … Fragmentation ' partons ! " # … Collision Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 5

  6. When are two collider events similar? A collider event is… Theoretically: very complicated Experimentally: very complicated However: The energy flow (distribution of energy) is the information that is robust to: [N.A. Sveshnikov, F.V. Tkachov, 9512370] fragmentation, hadronization, detector effects, … [F.V. Tkachov, 9601308] [P.S. Cherzor, N.A. Sveshnikov, 9710349] Energy flow ó Infrared and Collinear (IRC) Safe information Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 6

  7. When are two collider events similar? Rapidity ! Energy flow is robust information A z i m u t h " Detection ) Hadronization hadrons & ± ( ± … Fragmentation ) partons # $ % … Collision . Treat events as distributions of energy: * / + 0( ̂ ) + ) +,- Ignoring particle flavor, charge… energy direction Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 7

  8. Outline When are two events similar? When they have similar distributions of energy Part I The Energy Mover’s Distance Introduction Movie Time Observables Quantifying event modifications Part II Applications Exploring the Space of Events Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 8

  9. Outline When are two events similar? When they have similar distributions of energy Part I The Energy Mover’s Distance Introduction Movie Time Observables Quantifying event modifications Part II Applications Exploring the Space of Events Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 9

  10. The Energy Mover’s Distance Review: The Earth Mover’s Distance Earth Mover’s Distance : the minimum “work” (stuff x distance) to rearrange one pile of dirt into another [S. Peleg, M. Werman, H. Rom] [Y. Rubner, C. Tomasi, and L.J. Guibas] Metric on the space of (normalized) distributions: symmetric, non-negative, triangle inequality Distributions are close in EMD ó their expectation values are close. Also known as the 1- Wasserstein metric. Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 10

  11. The Energy Mover’s Distance From Earth to Energy Energy Mover’s Distance : the minimum “work” (energy x angle) to rearrange one event (pile of energy) into another [P.T. Komiske, EMM, J. Thaler, 1902.02346] 2 4 2 6 /3 8 / EMD ℇ, ℇ & = min 6 /3 {,} . . 5 /3 & 8 7 3 5 /01 301 /3 Difference in radiation pattern Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 11

  12. The Energy Mover’s Distance From Earth to Energy Energy Mover’s Distance : the minimum “work” (energy x angle) to rearrange one event (pile of energy) into another [P.T. Komiske, EMM, J. Thaler, 1902.02346] 2 4 2 4 2 2 6 /3 9 / EMD ℇ, ℇ & = min 6 /3 & {,} . . 5 7 + . 9 / − . 9 /3 3 & 9 3 5 /01 301 /01 301 /3 Difference in Difference in radiation pattern total energy Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 12

  13. The Energy Mover’s Distance From Earth to Energy Energy Mover’s Distance : the minimum “work” (energy x angle) to rearrange one event (pile of energy) into another [P.T. Komiske, EMM, J. Thaler, 1902.02346] EMD has dimensions of energy True metric as long as 7 ≥ 1 < 6 =>? 7 ≥ the jet radius, for conical jets Solvable via Optimal Transport problem. ~ 1 ms to compute EMD for two jets with 100 particles. 2 4 2 4 2 2 6 /3 9 / EMD ℇ, ℇ & = min 6 /3 & {,} . . 5 7 + . 9 / − . 9 /3 3 & 9 3 5 /01 301 /01 301 /3 Difference in Difference in radiation pattern total energy Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 13

  14. Outline When are two events similar? When they have similar distributions of energy Part I The Energy Mover’s Distance Introduction Work to rearrange one event into another. Movie Time Observables Quantifying event modifications Part II Applications Exploring the Space of Events Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 14

  15. Outline When are two events similar? When they have similar distributions of energy Part I The Energy Mover’s Distance Introduction Work to rearrange one event into another. Movie Time Observables Quantifying event modifications Part II Applications Exploring the Space of Events Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 15

  16. Movie Time: Visualizing the EMD Taking a walk in the space of events EMD is the cost of an optimal transport problem. We also get the shortest path between the events. Interpolate along path to visualize! Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 16

  17. Movie Time: Visualizing Jet Formation Hadronization Fragmentation Collision QCD Jets W Jets ! T op Jets ! Pythia 8, + = 1.0 jets, ! 3 ∈ 500,550 GeV Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 17

  18. Movie Time: Visualizing QCD Jet Formation Quark Fragmentation Hadronization fragmentation hadronization EMD: 111.6 GeV EMD: 18.1 GeV Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 18

  19. Movie Time: Visualizing W Jet Formation W Decay Quarks Fragmentation Hadronization decay fragmentation hadronization EMD: 78.3 GeV EMD: 26.3 GeV EMD: 12.9 GeV Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 19

  20. Movie Time: Visualizing Top Jet Formation Top Decay Quarks Fragmentation Hadronization decay fragmentation hadronization EMD: 161.1 GeV EMD: 47.1 GeV EMD: 27.0 GeV Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 20

  21. Outline When are two events similar? When they have similar distributions of energy Part I The Energy Mover’s Distance Introduction Work to rearrange one event into another. Movie Time Visualize energy movement and jet formation. Observables Quantifying event modifications Part II Applications Exploring the Space of Events Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 21

  22. Outline When are two events similar? When they have similar distributions of energy Part I The Energy Mover’s Distance Introduction Work to rearrange one event into another. Movie Time Visualize energy movement and jet formation. Observables Quantifying event modifications Part II Applications Exploring the Space of Events Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 22

  23. Observables * [I. Stewart, F. Tackmann, W. Waalewijn, 1004.2489] ! -(sub)jettiness: $ = & $ , 4 7,6 $ , … , 4 #,6 $ } [J. Thaler, K. Van Tilburg, 1011.2268] " # + ' min # /012 {4 ),6 [J. Thaler, K. Van Tilburg, 1108.2701] '() measures how well jet energy is aligned into N (sub)jets " ) /+ ≫ 0 " ) /+ > " 7 /+ ≫ 0 " > /+ ≃ 0 Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 23

  24. Observables * ! -subjettiness: $ = & $ , 4 7,6 $ , … , 4 #,6 $ } " # + ' min # /012 {4 ),6 [J. Thaler, K. Van Tilburg, 1011.2268] '() [J. Thaler, K. Van Tilburg, 1108.2701] measures how well jet energy is aligned into N subjets " ) /+ ≫ 0 " ) /+ > " 7 /+ ≫ 0 " > /+ ≃ 0 ! -subjettiness is the EMD between the event and the closest ! -particle event. " # (ℇ) = min ℇ G (# EMD ℇ, ℇ′ . @ ≠ 1 corresponds to other p-Wasserstein distances with p = @ . Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 24

  25. ̂ Observables ( Getting quantitative ! ℇ = $ ) % Φ , % Take any additive IRC-safe observable: %&' ) % ( 1 % - (/) = $ / ) % 1 % e.g. jet angularities: [C. Berger, T. Kucs, and G. Sterman, 0303051] %&' [A. Larkoski, J. Thaler, and W. Waalewijn, 1408.3122] Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 25

Recommend


More recommend