Exploring The (Metric) Space of Collider Events ATLAS-Theory Lunch Seminar Eric M. Metodiev Center for Theoretical Physics Massachusetts Institute of T echnology Joint work with Patrick Komiske and Jesse Thaler [1902.02346] April 17, 2019 1
Outline When are two events similar? The Energy Moverβs Distance Movie Time Applications Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 2
Outline When are two events similar? The Energy Moverβs Distance Movie Time Applications Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 3
When are two events similar? Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 4
When are two collider events similar? How an event gets its shape Detection π Hadronization hadrons π Β± πΏ Β± β¦ Fragmentation partons π π£ π β¦ π Collision Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 5
When are two collider events similar? A collider event isβ¦ Theoretically: very complicated Experimentally: very complicated However: The energy flow (distribution of energy) is the information that is robust to: fragmentation, hadronization, detector effects, β¦ [N.A. Sveshnikov, F.V. Tkachov, 9512370] [F.V. Tkachov, 9601308] [P.S. Cherzor, N.A. Sveshnikov, 9710349] Energy flow ο³ Infrared and Collinear (IRC) Safe information Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 6
When are two collider events similar? Energy flow is robust information Detection π Hadronization hadrons π Β± πΏ Β± β¦ Fragmentation partons π π£ π β¦ π Collision π Treat events as distributions of energy: ΰ· πΉ π π(ΰ· π β ΖΈ π π ) π=1 Ignoring particle flavor, chargeβ¦ energy direction Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 7
Outline When are two events similar? The Energy Moverβs Distance Movie Time Applications Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 8
The Energy Moverβs Distance Review: The Earth Moverβs Distance Earth Moverβs Distance : the minimum βworkβ (stuff x distance) to rearrange one pile of dirt into another [S. Peleg, M. Werman, H. Rom] [Y. Rubner, C. Tomasi, and L.J. Guibas] Metric on the space of (normalized) distributions: symmetric, non-negative, triangle inequality Distributions are close in EMD ο³ their expectation values are close. Also known as the 1- Wasserstein metric. Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 9
The Energy Moverβs Distance From Earth to Energy Energy Moverβs Distance : the minimum βworkβ ( energy x angle) to rearrange one event (pile of energy) into another [P.T. Komiske, EMM, J. Thaler, 1902.02346] π β² π π ππ πΉ π EMD β, β β² = min π ππ {π} ΰ· ΰ· π ππ β² πΉ π π π π=1 π=1 ππ Difference in radiation pattern Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 10
The Energy Moverβs Distance From Earth to Energy Energy Moverβs Distance : the minimum βworkβ ( energy x angle) to rearrange one event (pile of energy) into another [P.T. Komiske, EMM, J. Thaler, 1902.02346] π β² π β² π π π ππ πΉ π EMD β, β β² = min π ππ β² {π} ΰ· ΰ· π π + ΰ· πΉ π β ΰ· πΉ ππ π β² πΉ π π π=1 π=1 π=1 π=1 ππ Difference in Difference in total energy radiation pattern Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 11
The Energy Moverβs Distance From Earth to Energy Energy Moverβs Distance : the minimum βworkβ ( energy x angle) to rearrange one event (pile of energy) into another [P.T. Komiske, EMM, J. Thaler, 1902.02346] EMD has dimensions of energy 1 True metric as long as π β₯ 2 π max π β₯ the jet radius, for conical jets Solvable via Optimal Transport problem. ~ 1 ms to compute EMD for two jets with 100 particles. ββ²β² π β² π β² π π π ππ EMD β, β β² = min β² {π} ΰ· ΰ· π π + ΰ· πΉ π β ΰ· πΉ ππ π β β² π=1 π=1 π=1 π=1 β Difference in Difference in total energy radiation pattern Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 12
Outline When are two events similar? The Energy Moverβs Distance Movie Time Applications Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 13
Movie Time: Visualizing the EMD Taking a walk in the space of events EMD is the cost of an optimal transport problem. We also get the shortest path between the events. Interpolate along path to visualize! Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 14
Movie Time: Visualizing Jet Formation Hadronization Fragmentation Collision QCD Jets W Jets π T op Jets π Pythia 8, π = 1.0 jets, π π β 500,550 GeV Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 15
Movie Time: Visualizing QCD Jet Formation Quark Fragmentation Hadronization fragmentation hadronization EMD: 111.6 GeV EMD: 18.1 GeV Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 16
Movie Time: Visualizing W Jet Formation W Decay Quarks Fragmentation Hadronization decay fragmentation hadronization EMD: 78.3 GeV EMD: 26.3 GeV EMD: 12.9 GeV Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 17
Movie Time: Visualizing Top Jet Formation Top Decay Quarks Fragmentation Hadronization decay fragmentation hadronization EMD: 161.1 GeV EMD: 47.1 GeV EMD: 27.0 GeV Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 18
Outline When are two events similar? The Energy Moverβs Distance Movie Time Applications Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 19
Old Observables in a New Language Thrust is the EMD between the event and two back-to-back particles. π’ = πΉ β max ΰ· | Τ¦ π π β ΰ· π| π’(β) = min β β² =2 EMD(β, ββ²) π ΰ· π with π ππ = ΖΈ π π β ΖΈ π π , ΖΈ π = Τ¦ π/πΉ πΆ -(sub)jettiness is the EMD between the event and the closest π -particle event. π πΎ = min πΎ , π 2,π πΎ , β¦ , π π,π πΎ } π π (β) = min β β² =π EMD β, ββ² . π π π axes ΰ· πΉ π min π {π 1,π π=1 π πΎ β 1 is p-Wasserstein distance with p = πΎ . Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 20
ΖΈ EMD and IRC-Safe Observables Events close in EMD are close in any infrared and collinear safe observable π Additive IRC-safe observables: π« β = ΰ· πΉ π Ξ¦ π π π=1 EMD β, β β² β₯ 1 Earth Moverβs Difference in ππ π« β β π« β β² Distance observable values βLipschitz constantβ of Ξ¦ i.e. bound on its derivative π« e.g. jet angularities: π [C. Berger, T. Kucs, and G. Sterman, 0303051] π (πΎ) = ΰ· πΎ πΉ π π π [A. Larkoski, J. Thaler, and W. Waalewijn, 1408.3122] For πΎ β₯ 1 jet angularities: π=1 π (πΎ) β β π (πΎ) β β² β€ πΎ EMD β, β β² Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 21
π Quantifying event modifications: Hadronization π (πΎ=1) = ΰ· πΉ π π π π=1 partons hadrons π (πΎ=1) = 111.1GeV π (πΎ=1) = 111.6GeV β = β partons π (πΎ=1) β β π (πΎ=1) β β² β€ EMD β, β β² β β² = β hadrons Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 22
π Quantifying event modifications: Hadronization π (πΎ=1) = ΰ· πΉ π π π π=1 partons hadrons π (πΎ=1) = 111.1GeV π (πΎ=1) = 111.6GeV β = β partons π (πΎ=1) β β π (πΎ=1) β β² β€ EMD β, β β² β β² = β hadrons Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 23
Exploring the Space of Events: W jets π¨ W π 1 βπ¨ Visualize the space of events with t-Distributed Stochastic Neighbor Embedding (t-SNE). [L. van der Maaten, G. Hinton] W jets are 2-pronged and constrained by W mass: Finds an embedding into a low-dimensional 2 2 π ππΎ 2 = π π manifold that respects distances. π¨ 1 β π¨ π 2 = 2 π π π π Hence we expect a two -dimensional space of W jets: π¨, π After π rotation, one -dimensional: π¨ Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 24
Exploring the Space of Events: W jets βtop heavyβ π¨ W π 1 βπ¨ W jets are 2-pronged and βone prongedβ constrained by W mass: βbalancedβ 2 2 π ππΎ 2 = π π ? π¨ 1 β π¨ π 2 = 2 π π π π Hence we expect a two -dimensional space of W jets: π¨, π After π rotation, W jets, π = 1.0 βbottom heavyβ one -dimensional: π¨ π π β 500,510 GeV 2x zoom Eric M. Metodiev, MIT Exploring the (Metric) Space of Collider Events 25
Recommend
More recommend