exact volume preserving skinning with shape control
play

Exact Volume Preserving Skinning with Shape Control Damien ROHMER, - PowerPoint PPT Presentation

Exact Volume Preserving Skinning with Shape Control Damien ROHMER, Stefanie HAHMANN, Marie-Paule CANI Grenoble University, France Symposium on Computer Animation 2009, New Orleans, USA Rohmer, Hahmann, Cani (Grenoble) Constant Volume


  1. Exact Volume Preserving Skinning with Shape Control Damien ROHMER, Stefanie HAHMANN, Marie-Paule CANI Grenoble University, France Symposium on Computer Animation 2009, New Orleans, USA Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 1 / 22

  2. Classical character animation pipeline Interactive character deformation Skinning deformation (Skeleton Subspace Deformation) Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 2 / 22

  3. Motivations: character animation Fits into the standard pipeline . Interactive deformation. Natural -looking behavior ⇒ Constant volume. Intuitive control . Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 3 / 22

  4. Volume correction: Overview Post-process volume correction on skeleton deformed shaped. Exact volume preservation. Controlable using 1D profil curve . Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 4 / 22

  5. Previous work: Skinning deformation Training based approaches ( ⊕ Freedom, ⊖ Need of training poses) [Lewis et al. , SIGGRAPH 2000] [Wang et al. , SCA 2002] [Weber et al. , EG 2007] Mathematical interpolation improvement [Angelidis and Singh SCA 2007] ( ⊕ Constant volume, ⊖ Control) [Kavan et al. TOG 2008] ( ⊕ General, ⊖ No constant volume) Geometrical constraints ( ⊕ Constant volume, ⊖ Control) [Funck et al. VMV 2008] [Rohmer et al. PG 2008] Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 5 / 22

  6. Improvements from our previous work [Rohmer et al. Our Method PG 2008] Constant volume approximated exact Final shape control skinning weights 1D-profil curve R N R 3 N Deformation space Mesh triangles triangles+quads Overlaping defor- no yes mation Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 6 / 22

  7. Overview 1 Exact volume compensation 2 Local control of the deformation 3 Application to complex characters Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 7 / 22

  8. Enclosed volume of the mesh Triangular mesh Quadrangular mesh [Gonzalez-Ochoa 99] � � z M k T V = V q = � � V = V t = z avg A quads quads triangles triangles Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 8 / 22

  9. Volume correction expression Per-Vertex displacement u � � � u � 2 min constraint to V ( p + u ) = V 0 Lagrange multipliers expression � u i � 2 + λ ( V ( p + u ) − V 0 ) � Λ( u , λ ) = i V is trilinear in ( u x , u y , u z ) . Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 9 / 22

  10. Exact closed-form correction in 3 steps Extend the idea from [Elber, Technion report 2000] : 1 Deform along x and correct µ 0 % of the volume. 2 Deform along y and correct µ 1 % of the volume. Deform along z and correct µ 2 % of the volume. 3 u i = ( u x , u y , u z ) � � ∇ x i V ∇ y i V ⋆ ∇ z i V ⋆⋆ = ∆ V µ 0 k �∇ x k V � 2 , µ 1 k �∇ y k V ⋆ � 2 , µ 2 k �∇ z k V ⋆⋆ � 2 P P P µ 0 + µ 1 + µ 2 = 1 ⇒ exact volume preservation. Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 10 / 22

  11. Localizing the deformation Use of local frames for each joint. Use of vertex-displacement weights  � u i � 2 � min   γ i vertices i  constraint to V ( p + u ) = V 0  Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 11 / 22

  12. 1D-Profil curve Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 12 / 22

  13. Application to complex characters Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 13 / 22

  14. Animal animation Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 14 / 22

  15. Adaptative refinement Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 15 / 22

  16. Overlaping deformations Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 16 / 22

  17. Giraffe deformation Rubber effect automatically oriented Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 17 / 22

  18. Animal animation Video Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 18 / 22

  19. Computational Time vertices joint number cost giraffe 1673 1 0.011s elephant 6646 1 0.053s subdivided 13439 1 0.110s elephant elephant 6646 17 0.407s Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 19 / 22

  20. Limitations ∆ V is computed globally (computation time). Tradeoff: Speed VS Local limitations . Ordering in x , y , z deformation (20 % r ). Ordering in skeleton hierarchy ( < 2 % r ). Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 20 / 22

  21. Conclusion and future work Advantages Exact volume preservation. Controlability using 1D-curve profil. No limitation on locality, overlaping influences. Future Work Build a GUI / Profil sketch. Local cutting to compute ∆ V locally. Self collision. Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 21 / 22

  22. Thank you Rohmer, Hahmann, Cani (Grenoble) Constant Volume Skinning SCA’09 22 / 22

Recommend


More recommend