euclid nir image simulation
play

Euclid NIR image simulation Gregor Seidel Max Planck Institute for - PowerPoint PPT Presentation

Euclid Consortium Euclid NIR image simulation Gregor Seidel Max Planck Institute for Astronomy Heidelberg EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12 Euclid imagem Consortium what: (1)image / point source simulation


  1. Euclid Consortium Euclid NIR image simulation Gregor Seidel Max Planck Institute for Astronomy Heidelberg EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  2. Euclid imagem Consortium ● what: (1)image / point source simulation and testing pipeline (2)written in C++, Linux, command line user interface ● dependencies: dependencies: libfftw3-dev libcfitsio3-dev libpng12-dev libcairo2-dev libreadline6- dev libpstreams-dev libpthread-stubs0-dev ● initial purpose: determine limiting magnitudes for flat-spectrum point sources (1)gauge influence of individual instrument model parameters (2)optimise requirements on instrument performance margins ● goal: complete NIR imaging module for end to end simulation pipeline EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  3. Euclid simulation pipeline Consortium ⋅ background + source system response optical PSF ∗ incident flux AOCS PSF pixel size pixelised flux intra-pixel response flat-field cosmic rays electron image exposure time dark-map Poisson noise dither readout-noise pixel crosstalk data analysis e - /ADU conversion pipelines further dithers drizzled image weight maps catalogues S/N tests dithering strategy EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  4. Euclid source image Consortium ⋅ background + source system response optical PSF ∗ incident flux AOCS PSF pixel size pixelised flux intra-pixel response flat-field cosmic rays electron image exposure time dark-map Poisson noise dither readout-noise pixel crosstalk data analysis e - /ADU conversion pipelines further dithers drizzled image weight maps catalogues S/N tests dithering strategy EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  5. Euclid source image Consortium ● input fluxes from: (1) Skylens (Massimo Meneghetti, Peter Melchior): raytracing simulation ● accounts for lensing input from cosmological ● simulations Sérsic or HUDF galaxies ● deconvolution through ● wavelet decomposition (2) Sérsic models for galaxies, galaxy and star catalogues (3) Point source grids Skylens+imagem: single H-band detector, using 3 dithers EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  6. Euclid source image Consortium ● input fluxes from: (1) Skylens (Massimo Meneghetti, Peter Melchior): raytracing simulation ● accounts for lensing input from cosmological ● simulations Sérsic or HUDF galaxies ● deconvolution through ● wavelet decomposition (2) Sérsic models for galaxies, galaxy and star catalogues (3) Point source grids Skylens+imagem: single H-band detector, using 3 dithers EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  7. Euclid source image Consortium ● input fluxes from: (1) Skylens (Massimo Meneghetti, Peter Melchior): raytracing simulation ● accounts for lensing input from cosmological ● simulations Sérsic or HUDF galaxies ● deconvolution through ● wavelet decomposition (2) Sérsic models for galaxies, galaxy and star catalogues (3) Point source grids Skylens+imagem: single H-band detector, using 3 dithers EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  8. Euclid source image Consortium ● input fluxes from: (1) Skylens (Massimo Meneghetti, Peter Melchior): raytracing simulation ● accounts for lensing input from cosmological ● simulations Sérsic or HUDF galaxies ● deconvolution through ● wavelet decomposition (2) Sérsic models for galaxies, galaxy and star catalogues (3) Point source grids Skylens+imagem: single H-band detector, using 3 dithers EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  9. Euclid source image Consortium ● input fluxes from: (1) Skylens (Massimo Meneghetti, Peter Melchior): raytracing simulation ● accounts for lensing input from cosmological ● simulations Sérsic or HUDF galaxies ● deconvolution through ● wavelet decomposition (2) Sérsic models for galaxies, galaxy and star catalogues (3) Point source grids Skylens+imagem: single H-band detector, using 3 dithers EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  10. Euclid source Consortium ● input fluxes from: (1) Skylens (Massimo Meneghetti, Peter Melchior): raytracing simulation ● accounts for lensing input from cosmological ● simulations Sérsic or HUDF galaxies ● deconvolution through ● wavelet decomposition (2) Sérsic models for galaxies, galaxy and star catalogues (3) Point source grids imagem: H band window 100x100 pixels Sérsic galaxy, realistic PSF from spectrum (Elisabete Da Cunha) EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  11. Euclid source Consortium ● input fluxes from: (1) Skylens (Massimo Meneghetti, Peter Melchior): raytracing simulation ● accounts for lensing input from cosmological ● simulations Sérsic or HUDF galaxies ● deconvolution through ● wavelet decomposition (2) Sérsic models for galaxies, galaxy and star catalogues (3) Point source grids imagem: Y band grid of 10 x 10 point sources convolved with PSF and background added EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  12. Euclid optics & filter throughput Consortium ⋅ background + source system response optical PSF ∗ incident flux AOCS PSF pixel size pixelised flux intra-pixel response flat-field cosmic rays electron image exposure time dark-map Poisson noise dither readout-noise pixel crosstalk data analysis e - /ADU conversion pipelines further dithers drizzled image weight maps catalogues S/N tests dithering strategy EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  13. Euclid optics & filter throughput Consortium throughputs and spectral energy distribution to ● (1) convert apparent magnitude to flux (2) superimpose wavelength dependent PSF (see below) for arbitrary filters ● (1) get, for any band, 5-sigma limiting magnitudes (2) adjust Y, J, H exposure times to equal limiting magnitude for all bands EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  14. Euclid optical PSF Consortium ⋅ background + source system response optical PSF ∗ incident flux AOCS PSF pixel size pixelised flux intra-pixel response flat-field cosmic rays electron image exposure time dark-map Poisson noise dither readout-noise pixel crosstalk data analysis e - /ADU conversion pipelines further dithers drizzled image weight maps catalogues S/N tests dithering strategy EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  15. Euclid optical PSF Consortium detailed treatment of the optical PSF using PSF database (Frank Grupp, ● Rory Holmes) oversampled PSFs for Y-, J-, H-band filters and 9 field positions from ● 920nm to 2000nm in ~14nm steps ... combined H-band PSF PSFs (shown at 1.4um, 1.6um, 2um) at field position 1, central 522x522 1μm 2 sub-pixels, logarithmic scaling EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  16. Euclid optical PSF Consortium generation of synthetic PSFs of either ● (1) double Gaussian or ... (2) ring shape determination of EE50 and EE80 radii ● signal-to-noise tests: ● ● point source S/N not sensitive to PSF wings ● Size of faint sources comparable to pixel size ● S/N driven by flux on central pixel EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  17. Euclid intrapixel response Consortium ⋅ background + source system response optical PSF ∗ incident flux AOCS PSF pixel size pixelised flux intra-pixel response flat-field cosmic rays electron image exposure time dark-map Poisson noise dither readout-noise pixel crosstalk data analysis e - /ADU conversion pipelines further dithers drizzled image weight maps catalogues S/N tests dithering strategy EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  18. Euclid intrapixel response Consortium the quantum efficiency can vary on the ● surface of each pixel 0.8% error in 3 dithers depending on the shape and strength of the ● variation, the photometry then varies with the sub-pixel position of a source result: intra-pixel variation < 5.5% to obtain ● photometric error < 0.8% in 3 dithers 5% intra-pixel variation measured intra-pixel response variations (N. Barron) 1-dither photometric precision for 5% intra-pixel response variation and varying FWHM of the AOCS + detector (not optical) PSF EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  19. Euclid flat, dark & readnoise Consortium ⋅ background + source system response optical PSF ∗ incident flux AOCS PSF pixel size pixelised flux intra-pixel response flat-field cosmic rays electron image exposure time dark-map Poisson noise dither readout-noise pixel crosstalk data analysis e - /ADU conversion pipelines further dithers drizzled image weight maps catalogues S/N tests dithering strategy EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

  20. Euclid flat, dark & readnoise Consortium varying quantum efficiency, dark ● current and readout noise per pixel can generate histograms from ● existing detector maps or a given mean and standard deviation can generate maps from given ● histograms flatfielding, dark current ● subtraction and weight image for each dither; weights taken into account for drizzling => operability criterium ● operability (logscale) EUCLID CSWG + OUSIM meeting Barcelona Gregor Seidel 10/07/12

Recommend


More recommend