Eucalyptus for the Productions of Cellulose Nanomaterials and Sugar/Biofuel Junyong (J.Y.) Zhu US Forest Service, Forest Products Laboratory Madison, WI, USA
Mechanical Fibrillation – Cellulose Nanofibrils (CNF) 100 nm 100 nm 5000 nm Energy cost Less uniform network Wang et al. (2012), Cellulose 19(5): 1631-1643
Enzymatic Fractionation – Cellulose Nanofibrils (CNF) with Sugar Sugars Alkanes 41 Bleached pulp 100 60 60 Recalcitrant Nano-fibrillated cellulose (RC) Cellulose (NFC) Zhu et al. (2011), Green Chemistry 13(5):1339-1344
Enzymatic Fractionation – Cellulose Nanofibrils (CNF) with Sugar Zhu et al. (2011), Green Chemistry 13(5):1339-1344
Undeinked Mixed Office Paper Cellulose Nanofibrils (CNF) 12.5 50 (a) 15 Specific modulus (MN x m/kg) Specific tensile (kN x m/kg) 40 10.0 12 Energy (kWh/kg) 9 7.5 30 6 20 5.0 3 2 = 1.00 Specific tensile MOP y = 0.068x, r Specific modulus 2 = 1.00 BEP y = 0.078x, r 0 10 2.5 0 30 60 90 120 150 180 210 0 30 60 90 120 150 180 Time (min) Grinding time (min) Wang and Zhu (2015), TAPPI J. 14(3):167- 74
100 kg < 50 kg CNC Cellulose T ( ° C) Year Author Acid (wt%) Yield (%) Nickerson & Harble 1947 22 boiling 30-40 Mukherjee & Woods 1953 66 20 low Dong et al. 1998 64 26-65 <50% Bondeson et al. 2006 44-65% 40-80 <50% Hamad & Hu 2010 16-64% 45-85 <40%
CNC Production Kinetics d C - Cel =( + k k )[ C C (1 )] 1 3 Cel Cel 0 dt d C NC = k C k C 1 Cel 2 NC dt d G lu = k 1.111 C k 1.111 C k G 2 NC 3 Cel 4 lu dt d X = k 1.136 X k X 5 6 n dt Wang et al, Ind Eng Chem Res, 53(27):11007-11014, 2014
Integrated Production of CNC with CNF – Eucalyptus Pulp Acid and Bleached sugar stream pulp Centrifuge Cellulose Supernatant Nanocrystals (CNC) Centrifuge Cellulosic Solid Residues (CSR) Cellulose Nanofibrils I (CNF-CSR)
L 21 = 228 80 S = 6.0 CrI = 85.5 (%) 60 exp Maximal CNC yield L 21 = 174 40 S = 7.6 CrI = 87.1 20 L 21 = 131 S = 6.8 CrI = 92.3 0 48 52 56 60 64 68 Sulfuric acid concentration (wt%)
TEM Images of CNF from CSR CSR Wang et al., Cellulose , 19(6): 2033-2047, 2012
CNF-CSR Film Wang et al, ACS Applied Materials and Interfaces, 5(7):2527, 2013
TEM images of CNC Wang et al., Cellulose , 19(6): 2033-2047, 2012
A Roadside Pile of Douglas-fir Forest Residue Leu et al, Biomass Bioenergy , 2013, 59:393
SPORL: Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses SO 2 Steam Sulfite with a base to adjust pH ~ 2 SO 2 + Hydroxide SPORL 180 170 160 Partial delignification without T(ºC) excessive lignin condensation 150 Lignin sulfonation 140 Hemicellulose degradation 130 Cellulose depolymerization 120 0 2 4 6 8 pH
Ground Douglas-fir Residue Fractions 3/8<V<1/2 3/16<III/1/4 I<1/8 5/8<VII<3/4 7/8<IX<1
Peterson-Pacific Horizontal Grinder
FS – 10 Chemical Compositions Bark Klason Sample Lignin Glucan Xylan Mannan G+X+M As 5.9 30.5 38.4 4.4 7.5 50.3 harvested FS-10 screened out 3.4 29.3 41.0 5.7 9.7 56.4 fraction I
Scale-up Pretreatment Maintain same pretreatment severity (CHF): 𝑫𝑰𝑮 = 𝒇 𝜷− 𝑭 𝑺𝑼 + 𝜸 𝑫 𝑩 + 𝜹 𝑫 𝑪 𝑫 𝑩 + 𝑫 𝑪 𝒖 Reaction time at low T can be determined 𝑭 𝟐 𝟐 𝒖 𝑼𝟐𝟓𝟔 = 𝒇𝒚𝒒 − 𝑼 𝟐𝟗𝟏 ) 𝒖 𝑼𝟐𝟗𝟏 𝑺 ( 𝑼 𝟐𝟓𝟔 − R = 8.314 J/mole/K, E = 100,000 J/mole Zhang et al., Process Biochemistry , 49:466, 2014
Optimal Conditions and Inhibitor Formation T ( ° C) Total SO 2 Time Inhibitor (g/L) (min) 180 22 26 1.000 173 22 39 0.776 170 22 47 0.694 165 22 75 0.575 155 22 123 0.389 145 22 240 0.258 140 60 50 0.030 Zhang et al., Process Biochemistry , 49:466, 2014
SPORL Process Flow - Forest Residue to Ethanol Forest residue Ethanol Lignosulfonate 1000 kg FS-10 SO 2 = 66 kg Ca(OH) 2 = 24 kg Lignin residue Distillation Waste water Separation Purification Initial pH ~ 2.0 Bisulfite/wood = 6.7% To wet scrubber Pretreatment Sulfite Solution Whole slurry Size Reduction No detoxification No washing Steam Neutralization Furan = 1.0 g/L Zhu et al., Bioresour. Technol , 179:390, 2015
FPL Pilot Scale Facility – 390L Zhu et al., Bioresour. Technol , 179:390, 2015
Overall Mass Balance – FS10 284 L/ton wood @ 42 g/L CTec3 Loading: 35 mL/kg untreated FS-10 892 (Wet solids OD weight) Ethanol: 224 1000 Glucan: 391 Lignin: 222 @ 41.9 g/L Glucan: 410 Mannan: 46 HMF: 0.7 Mannan: 97 Xylan: 21 Furfural: 2 Xylan: 57 Arabinan: 3 Acetic acid: 7 90 Arabinan: 10 Galactan: 11 Ca(OH) 2 : 24 Galactan: 20 SO 2 : 66 Lignin: 293 79 (Remaining Liquor) Glucan: 7 Lignin: 36 Mannan: 16 HMF: 0.2 All units: g or kg Xylan: 6 Furfural: 0.5 unless indicated Arabinan: 1 Acetic acid: 8 Waste Water Lignosulfonate: 130 Galactan: 4 Lignin residue Zhu et al., Bioresour. Technol , 179:390, 2015
Lignosulfonate as Dispersant for Coal water slurry (CWS) 6 Dispersant Dosage (wt%) Apparent viscosity of CWS (Pa.s) 0.75 5 Na-LS Ca-LS 4 FDN 3 2 1 0 2 4 8 16 32 64 128 256 Shear rate (1/s)
Summary Total peer reviewed publications ~ 90: CNC and CNF productions Pretreatment; Scale-up kinetics Fundamentals cellulase interaction with lignocelluloses Lab scale, pilot scale, pre-commercial scale and biojet for commercial flight SPORL is robust and efficient Co-products from lignin Enzyme lignin-interactions Invited as an International Expert by CTBE – at 2014 2 nd Generation Ethanol Workshop
Thank you for Attention
Lignosulfonate Ultrafiltration experiment LS-Ca Sugar Mass Sample Lignin Purity (%) (%) (%) (%) Original 100 100 100 44.5 > 200 kDa 3.9 n/a 2.4 89.1 4-200 kDa a 69.6 7.6 43.2 86.8 < 4 kDa 24.9 84.3 41.5 19.3 GPC (MALS) analysis Mw b Mn c Mw/Mn d Sample 4-200 kDa 23430 12910 1.8 D748 24660 14190 1.7 GPC (UV) analysis 4-200 kDa 2704 1092 2.5 D-748 13113 3293 4.0 Zhu et al., Bioresource Technology , 179:390-397, 2015
Undeinked Mixed Office Paper Cellulose Nanofibrils (CNF) 50 12.5 (a) Specific modulus (MN x m/kg) Specific tensile (kN x m/kg) 40 10.0 30 7.5 20 5.0 Specific tensile Specific modulus 2.5 10 0 30 60 90 120 150 180 Grinding time (min) Wang and Zhu (2015), TAPPI J. 14(3):167- 74
Model Predictions 100 100 80 80 Y CNCmax (%) 60 60 Y CSR (%) o C) Y CSR Y CNCmax T ( 40 50 40 40 Measured 60 70 80 20 20 0 0 48 50 52 54 56 58 60 62 64 66 Acid concentration (wt%) Wang et al, Ind Eng Chem Res, 53(27):11007-11014, 2014
Length Weighted Crystal Length 300 Data 280 2 = 0.947 y = -15.3x+1130, r 260 240 220 L 21 (nm) 200 180 160 140 120 100 54 56 58 60 62 64 66 Acid (wt%)
Take Home Messages We developed a kinetic model to provide good predictions of CNC yield, polysaccharide hydrolysis, and sugar production. CNC yield is dictated by two rate controlling processes: (1) under depolymerization of cellulose (Acid < 58 wt%); (2) sugar degradation (Acid 58 wt%). An acid =58% is the critical concentration for high CNC yield. For a given acid concentration, there is a maximal achievable CNC yield that is almost independent of temperature especially at acid concentration 58 wt%. The required time varies with T CNC morphology, crystal length, surface charge vary with acid concentration. However, CNC crystallinity is not affected.
Sugar Degradation Reaction 𝒍 𝒆 = 𝒇 (𝜷 𝒆 − 𝑭 𝒆 𝒆𝑬 𝑺𝑼) 𝒆𝒖 = 𝒍 𝒆 (𝟐 − 𝒀 𝑺 ) 𝒀 𝑺 = 𝟐 − 𝜾 𝒇 −𝑫𝑰𝑮 + 𝜾𝒇 −𝒈 𝑫𝑰𝑮 𝑬 = 𝒍 𝒆 ∙ 𝒖 𝟐 − 𝟐 − 𝜾 𝜾 𝑫𝑰𝑮 𝟐 − 𝒇 −𝑫𝑰𝑮 − 𝒈 ∙ 𝑫𝑰𝑮 (𝟐 − 𝒇 −𝒈∙𝑫𝑰𝑮 ) Zhang et al., Process Biochemistry , 49:466, 2014
Substrate Enzymatic Digestibility (SED) 100 80 SED (%) 60 40 CTec3 Loading: 15 FPU/g glucan 20 Solids (%) 10 15 0 0 10 20 30 40 50 60 70 80 Time (h)
Ethanol Production Solids Loading: 16.7 wt% 60 60 CTec3 (mL/kg FS-10) 35 26 Glucose 50 50 Ethanol 40 40 Glucose (g/L) Ethanol (g/L) 30 30 20 20 10 10 0 0 2 4 8 16 32 64 Time (h)
Eliminate Washing by Reducing Nonproductive Cellulase Binding to Lignin Lan et al. (2013), BioEnergy Research , 6:476-485 Lou et al. (2013), ChemSumChem , 6:919-927 Wang et al.(2013), Biotechnol Biofuels , 6:9 Zhou et al. (2013), Ind. Eng. Chem. Res , 52:8464 Wang et al. (2013), Biotechnol Biofuels , 6:156 Lou et al. (2014), Cellulose , 21:1351
Eliminate Washing Lignosulfonate as a Surfactant Lignosulfonate enhance enzymatic hydrolysis Surfactant to block bound lignin on solid Wang et al., Biotechnol Biofuels , 6:9, 2013; 6:156
Process Scale-up: Key Issues Facility capability Optimal condition in lab scale: T, t, Chemical dosage Pilot scale facility limitation T < T optimal Inhibitors in high solids fermentation
Recommend
More recommend