ermerging genomics
play

Ermerging Genomics Technologies in Research of Complex Traits and - PowerPoint PPT Presentation

Power of Programming, Munich, D, 14 March 2014 Ermerging Genomics Technologies in Research of Complex Traits and Diseases Andr G Uitterlinden Genetic Laboratory Department of Internal Medicine Department of Epidemiology Department of


  1. Power of Programming, Munich, D, 14 March 2014 Ermerging Genomics Technologies in Research of Complex Traits and Diseases André G Uitterlinden Genetic Laboratory Department of Internal Medicine Department of Epidemiology Department of Clinical Chemistry www.glimdna.org Note: for non-commercial purposes only

  2. RNA • Dynamic • Instable • Tissue specific regulation • Quantitative measurement Clinical+ Biological Relevance

  3. AGGAGTCTGACTGACCATTGGACTAGGGGATTGACCAGTAGGCTGCGATTCGGATGCGGATTGACGATTAAAAAGGATTACGATT AGCTGTGACGTGCAGGATGCTGCGATGCTGGACTGAACGCCCCCCGGGCTTCTTTATTAGCTGCTGACGTGCCAGATGCTGAC HUMAN DNA IS HIGHLY VARIABLE GTGCAGTGCGGCTGACGGTGCTTACCTGGATCGGATGCTACCAGTCGATCGATCGATCGTAGCGTAGCGTATGCTAGCTAGTGAT CGATGCTAGTAGCTAGCTAGCTGATCGATCATCGATCGTAGCTAGCTAGCTAGCTAGCTGATCGATCGATGCTAGCTAGCTAGCTA GTCATCTGTGGTGGGGGGTTAAATGCGATTGCCGCTAGCTAGAACAAAATAGCGGTATTTTGGGGAGTCTGACTGACCATTGGAC TAGGGGATTGACCAGTAGGCTGCGATTCGGATGCGGATTGACGATTAAAAAGGATTACGATTAGCTGTGACGTGCAGGATGCTGC GATGCTGGACTGAACGCCCCCCGGGCTTCTTTATTAGCTGCTGACGTGCCAGATGCTGACGTGCAGTGCGGCTGACGGAGTCT DNA Variants are: “SNP=Single Nucleotide Polymorphism” GACTGACCATTGGACTAGGGGATTGACCAGTAGGCTGCGATTCGGATGCGGATTGACGATTAAAAAGGATTACGATTAGCTGTGA CGTGCAGGATGCTGCGATGCTGGACTGAACGCCCCCCGGGCTTCTTTATTAGCTGCTGACGTGCCAGATGCTGACGTGCAGTG *Frequent in the Genome: CGGCTGACGGTGCTTACCTGGATCGGATGCTACCAGTCGATCGATCGATCGTAGCGTAGCGTATGCTAGCTAGTGATCGATGCTA GTAGCTAGCTAGCTGATCGATCATCGATCGTAGCTAGCTAGCTAGCTAGCTGATCGATCGATGCTAGCTAGCTAGCTAGTCATCTGT - >75 million (?) variable loci in genome (~2%) GGTGGGGGGTTAAATGCGATTGCCGCTAGCTAGAACAAAATAGCGGTATTTTGGGGAGTCTGACTGACCATTGGACTAGGGGATT GACCAGTA G GCTGCGATTCGGATGCGGATTGACGATTAAAAAGGATTACGATTAGCTGTGACGTGCAGGATGCTGCGATGCTGGA - “SNPs” , in/del, CNV, VNTR CTGAACGCCCCTCGGGCTTCTTTATTAGCTGCTGACGTGCCAGATGCTGACGTGCAGTGAGGAGTCTGACTGACCATTGGACTA GGGGATTGACCAGTAGGCTGCGATTCGGATGCGGATTGACGATTAAAAAGGATTACGATTAGCTGTGACGTGCAGGATGCTGCGA - dbSNP, HapMap, 1KG, “local” NGS efforts,.. TGCTGGACTGAACGCCCCCCGGGCTTCTTTATTAGCTGCTGACGTGCCAGATGCTGACGTGCAGTGCGGCTGACGGTGCTTAC “IN/DEL=Insertion Deletion” CTGGATCGGATGCTACCAGTCGATCGATCGATCGTAGCGTAGCGTATGCTAGCTAGTGATCGATGCTAGTAGCTAGCT A GCTGATC GATCATCGATAACCG TAT AAGGGCTAGCTAGCTGATCGATCGATGCTAGCTAGCTAGCTAGTCATCTGTGGTGGGGGGTTAAATGC GATTGCCGCTAGCTAGAACAAAATAGCGGTATTTTGGCGGCTGACGGTGCTTACCTGGATCGGATGCTACCAGTCGATCGATCGA *Frequent in the Population: TCGTAGCGTAGCGTATGCTAGCTAGTGATCGATGCTAGTAAGGAGTCTGACTGACCATTGGACTAGGGGATTGACCAGTAGGCTG CGATTCGGATGCGGATTGACGATTAAAAAGGATTACGATTAGCTGTGACGTGCAGGATGCTGCGATGCTGGACTGAACGCCCCC CGGGCTTCTTTATTAGCTGCTGACGTGCCAGATGCTGACGTGCAGTGCGGCTGACGGTGCTTACCTGGATCGGATGCTACCAGT > 5 % = common polymorphism “CNV=Copy Number Variation” CGATCGATCGATCGTAGCGTAGCGTATGCTAGCTAGTGATCGATGCTAGTAGCTAGCTAGCTGATCGATCATCGATCGTAGCTAGC TAGCTAGCTAGCTGATCGATCGATGCTAGCTAGCTAGCTAGTCATCTGTGGTGGGGGGTTAAATGCGATTGCCGCTAGCTAGAAC 1 – 5 % = less common variant AAAATAGC GGTATTTTGGAGGAGTCTGACTGACCATTGGACTAGGGGATTGACCAGTAGGCTGCGATTCGGATGCGGATTGAC GATTAAAAAGGAT TACGATTAGCTGTGACGTGCAGGATGCTGCGATGCTGGACTGAACGCCCCCCGGGCTTCTTTATTAGCTGCT < 1 % = rare variant/mutation GACGTGCCAGATGCTGACGTGCAGTGCGGCTGACGGTGCTTACCTGGATCGGATGCTACCAGTCGATCGATCGATCGTAGCGTA GCGTATGCTAGCTAGTGATCGATGCTAGTAGCTAGCTAGCTGATCGATCATCGATCGTAGCTAGCTAGCTAGCTAGCTGATCGATC GATGCTAGCTAGCTAGCTAGTCATCTGTGGTGGGGGGTTAAATGCGATTGCCGCTAGCTAGAACAAAATAGCGGTATTTTGGGCTA GCTAGCTGATCGATCATCGATCGTAGCTAGCTAGCTAGCTAGCTGATCGATCGATGCTAGCTAGCTAGCTAGTCATCTGTGGTGGG GGGTTAAATG CACACACACACACACACACACACACACACACACA GATTGCCGCTAGCTAGAACAAAATAGCGGTATTTTGGGGT GCTTACCTGGATCGGATGCTACCAGTCGATCGATCGATCGTAGCGTAGCGTATGCTAGCTAGTGATCGATGCTAGTAGCTAGCTAG CTGATCGATCATCGATCGTAGCTAGCTAGCTAGCTAGCTGATCGATCGATGCTAGCTAGCTAGCTAGTCATCTGTGGTGGGGGGTT “VNTR=Variable Nunber of Repeats” AAATGCGATTGCCGCTAGCTAGAACAAAATAGCGGTATTTTGGAGGAGTCTGACTGACCATTGGACTAGGGGATTGACCAGTAGG CTGCGATTCGGATGCGGATTGACGATTAAAAAGGATTACGATTAGCTGTGACGTGCAGGATGCTGCGATGCTGGACTGAACGCCC CCCGGGCTTCTTTATTAGCTGCTGACGTGCCAGATGCTGACGTGCAGTGCGGCTGACGGTGCTTACCTGGATCGGATGCTACCA GTCGATCGATCGATCGTAGCGTAGCGTATGCTAGCTAGTGATCGATGCTAGTAGCTAGCTAGCTGATCGA

  4. The influence of “technology-push” Time needed for genotyping 1 SNP in 7.000 DNA samples of the Rotterdam Study 1996 6 months : RFLP, Epp tubes 1999 3 months: RFLP, 96-well plates 2001 1 week: SBE, 384-well plates 2003 1 day: Taqman (manual) 2004 6 hrs : Taqman, Caliper pipetting robot 2005 3 hrs: Taqman, Deerac, “Fast” PCR 2007 6 sec: Illumina 550K array, 600 DNAs/week 2010 < 0.0006 sec: Illumina HiSeq2000 Sequencers

  5. Human Ageing Research: Bone as an Example... Maternal genotype Environmental factors Ageing Paternal genotype Peak BMD Bone Loss Bone Osteoporosis: growth Low BMD, fractures men BMD women GenR ERGO/Rotterdam Study AGGO EPOS CALEUR DNA collections bone endpoints 75 25 50 100 Age (yr)

  6. Osteoporotic fracture is a “complex” phenotype: Hip fx Fracture Risk Wrist fx Clinical Expression: Vertebral fx etc. Risk Factors : Bone Strength Impact Force Fall Risk BMD Quality Geometry DNA mutations and polymorphisms Environmental factors : diet, exercise, sun exposure, ... +Age, Sex, Age-at-Menopause, Height, OA, etc.

  7. Environmental influences can differ between populations ! Geographical distance: <100km HOLLAND BELGIUM Foto: Barbara Obermayer-Pietsch Foto: Stuart Ralston > 1100 mg/day < 500 mg/day Dietary Calcium intake

  8. Genetic Architecture of Diseases/Traits : Study designs to identify “risk” alleles common, complex rare, monogenic Linkage Analysis in pedigrees big Effect Size Next-Generation High-Throughput small Sequencing Genome-Wide Association Study rare common Frequency Genetic Variant

  9. Genome-Wide Association Study (GWAS) DNA collection : e.g. 1000 cases vs. 1000 controls DATA ANALYSIS (e.g., PLINK): Each dot is one SNP in, e.g, 2000 subjects AA AB BB Illumina Affymetrix AA→ SNP 1 14 18 X 1 2 3 4 5 6 7 8 10 12 BB→ SNP 2 AA Chromosomes AB→ SNP 3 . . BB . . Select SNPs Combine GWAS . . AB AB→ SNP 550,000 Replication - Effects per SNP are usually small - We are looking at common variants Meta-Analysis of all data

  10. A “Dubai”plot: GWAS of human iris colour P < 1.10 -206 HERC2/OCA2 gene n = 5974 P - value (-log 10) 12 kb on Chr. 15q11 Chromosome / position Rotterdam Study: Kayser et al, Am J Hum Genet, 2008

  11. A “Holland”plot: GWAS for BMD in the Rotterdam Study LUMBAR SPINE BMD 5 x 10 -8 • Rotterdam Study • ERF Study N=5,000 • Twins UK • deCODE Genetics Rivadeneira et al., Nat Genet., 2009 • Framingham Study

  12. A real Manhattan plot: “height” in the GIANT consortium - 180,000 subjects - 180 loci identified - 10-15% variance explained 5 x 10 -8 Lango, Estrada, Rivadeneira et al., Nature, 2010

  13. Grades of Evidence - Collaborative prospective meta-analysis of individual Very Good level data in consortia - Meta-analysis of published data - >2 large studies (n > 1000 each) - 1-3 smaller studies Not so Good - 1 small study (n<500)

  14. EUROPE by prejudice.…….(according to USA) (From: Yanko Tsvetkov, alphadesigner.com)

  15. The he GEFOS/GE OS/GENOM NOMOS OS con onsortium ortium Number of subjects: GENOMOS: >150,000 of which GWAS: 40,000 www.gefos.org = G GENOMOS study dy popul ulat ation on = i idem m + GWAS www.genomos.eu = i idem, m, under er negot otiati ation on / i in devel elopm opment ent

  16. GEFOS HYPOTHESIS-FREE GWAS: AS SAMPLE SIZE INCREASES, GENOME-WIDE SIGNIFICANT SIGNALS BECOME GRADUALLY EVIDENT LUMBAR SPINE BMD 5 x 10 -8 • Rotterdam Study • ERF Study N=5,000 • Twins UK • deCODE Genetics Rivadeneira et al., Nat Genet., 2009 • Framingham Study

  17. LUMBAR SPINE BMD LRP5 5 x 10 -8 • Rotterdam Study • ERF Study N=6,200 • Twins UK • deCODE Genetics Rivadeneira et al., Nat Genet., 2009 • Framingham Study

  18. LUMBAR SPINE BMD LRP5 5 x 10 -8 • Rotterdam Study • ERF Study N=8,500 • Twins UK • deCODE Genetics • Framingham Study Rivadeneira et al., Nat Genet., 2009

  19. LUMBAR SPINE BMD RANK-L C6ôrf10 OPG 1p36 LRP5 5 x 10 -8 MHC • Rotterdam Study • ERF Study N=15,000 • Twins UK • deCODE Genetics • Framingham Study Rivadeneira et al., Nat Genet., 2009

  20. LUMBAR SPINE BMD RANK-L C6ôrf10 OPG 1p36 SP7 LRP5 5 x 10 -8 • Rotterdam Study • ERF Study N=19,125 • Twins UK • deCODE Genetics • Framingham Study Rivadeneira et al., Nat Genet., 2009

  21. GWAS issues: *GWAS hits are just a start to find causal genes/variant(s) *Follow-up research per individual locus *GWAS creates new genome annotation/function/biology *Small effect size does NOT mean small biological relevance Willer et al., Nature Genetics, jan 2009: 145 authors

  22. Published Genome-Wide Associations through 12/2012 P ublished GWA at p≤5X10 -8 for 17 trait categories As of 11/19/13, the catalog includes 1751 publications and 11,912 SNPs. With current GWAS efforts we have: *Genotyped only 0.3% of nucleotides in the human genome *Selected for “Universal/Cosmopolitan” variants *Explained 2-30% of genetic variance per disease (some exceptions) *not analysed many more phenotypes NHGRI GWA Catalog www.genome.gov/GWAStudies www.ebi.ac.uk/fgpt/gwas/

  23. What are eQTLs?  e xpression Q uantitative T rait L oci  genomic variations that explain expression traits

Recommend


More recommend