energy gy s storage a and s syntheti tic m methane
play

Energy gy S Storage a and S Syntheti tic M Methane SCCER HaE, - PowerPoint PPT Presentation

Energy gy S Storage a and S Syntheti tic M Methane SCCER HaE, Oct. 25 th , 2017 Gaznat SA: Dominique Luisier, Nicolas Mlynek, Gilles Verdan EPFL: Dr. Noris Gallandat, Franois Abbet, Emanuele Moioli, Mathias Bguin, Prof. Andreas Zttel


  1. Energy gy S Storage a and S Syntheti tic M Methane SCCER HaE, Oct. 25 th , 2017 Gaznat SA: Dominique Luisier, Nicolas Mlynek, Gilles Verdan EPFL: Dr. Noris Gallandat, François Abbet, Emanuele Moioli, Mathias Béguin, Prof. Andreas Züttel 25/10/17 1

  2. The U Unhab habitabl able E Earth 25/10/17 2

  3. Clos osin ing th the C Carbon C Cycle cle SYNTHESIS H 2 → n CO CO 2 + (3n+1) +1) H CH 3 -(C CH (CH 2 ) n-2 - CH CH 3 3 + 2n 2n H H 2 O H 2 CO 2 CO H 2 O O 2 -(CH CH 2 ) n - O 2 ENERGY COMBUSTION ELECTROLYSIS O → H 2 + ½ H 2 O + ½O 2 H 2 O ENERGY H 2 O CO CO 2 [1] A. Züttel et al., “Storage of Renewable Energy by Reduction of CO 2 with Hydrogen,” Chim. Int. J. Chem., May 2015 25/10/17 3

  4. The H e Hype C Cycle cle VISIBIL ILIT ITY Peak of Inflated Plateau of Productivity Expectations Fail TIME ME Technology Trigger Trough of Disillusionment 25/10/17 4

  5. Outline Small Scale Demonstrator Sion (SSDS, EPFL • Valais/Wallis) Synthesis of Methane and Waste Heat Recovery • (SOMAHR, EPFL Valais/Wallis & Gaznat SA) 25/10/17 5

  6. Small S ll Scale le D Dem emonstrator S Sion ( (SSDS) Si Si Perovskite CIGS cryst amorph cells NI DAQ 21kW peak , 2 kW av 48 kWh/day 30 ° 10 ° 3 Phase EMS PbO/PbSO 4 400 V, 30 A 72 kWh 48V Ni/MH 72 kWh 3 Phase: BMS 400 V, 30 A Electrolyzer MH Storage Methanation CO 2 0.1 kg/h 1.54 kW 80.8 kWh H2 CO 2 CH 4 2.05 kg H2 50 g/h, 13 bar 275 g/h Heat 0.46 kW H 2 , 4 bar 2 kW 3.55 kW CO 2 + 4H 2 ➞ CH 4 + 2H 2 O Full Solar to Synthetic Hydrocarbons conversion • Methanol MH 0.26 kg/h displayed in a single installation CO 2 Compressor 1.63 kW 366 g/h Many components developed in-house gives a high • CH 3 OH flexibility and modularity of the installation H 2 Heat 50 g/h, 50 bar Intermediate size allowing testing of new materials and 0.23 kW • components under real conditions at moderate costs 5 – 50 bar CO 2 + 3H 2 ➞ CH 3 OH + H 2 O 20 o – 100 o C 25/10/17 6

  7. PV I Installation 4 different types of panels are installed at • two inclinations (10 ° and 30 ° ) The total peak power P Peak is about 21 kW • The average power P av is about 2.1 kW • Si Si Pero Pe rovskite CIGS crys yst amorph cells Type Manufacturer Inclination Orientation Area Efficiency Peak Est. Ann. Cost Payback [m 2 ] [%] Power Production [CHF] Time [W] [kWh] [Years] Si cryst. 10° 24.1 3975 3975 3120 5.23 ET Solar 16.29 Si cryst. 30° 24.1 3975 3975 3120 5.23 Si amorph 10° 24.1 3900 3900 3120 5.33 ET Solar 15.98 Si amorph 30° 24.1 3900 3900 3120 5.33 South CIGS 10° 14.7 2040 2040 2497 8.16 Solar Frontier 13.84 CIGS 30° 14.7 2040 2040 2497 8.16 Perovskite 10° 8 490 490 16’756 227.9 Solaronix SA 8.5 Perovskite 30° 8 490 490 16’756 227.9 25/10/17 7

  8. Batter eries es Hopecke Pb Batteries Nilar Metal Hydrides Batteries 12 sun power VRL1500 1695 10E-120-10-PTAIL 24 Units, 2V, 1500 Ah = 3kWh 60 Units, 120V, 10Ah = 1.2kWh Total Capacity: 72 kWh Total Capacity: 72 kWh Dimensions: 215 X 277 x 710 mm Dimensions: 212 x 347 x 325 mm Weight: 100 kg per unit (0.03 kWh/kg) Weight: 29 kg per unit (0.041 kWh/kg) [2] www.hoppecke.com [3] www.nilar.com 25/10/17 8

  9. Electr ectrolyser er Pr Prot oton on OnSite S20 S20 H 2 Flow: 47.5 g/hr (530 Nl/hr) Delivery Pressure: 13.8 barg Electrical Power: 3.55 kW Power Consumption: 6.7 kWh/Nm 3 H2 [4] An Analytical Model for the Electrolyser Performance Derived from Materials Parameters, N. Gallandat et al., JPEE, 2017 25/10/17 9

  10. Metal al Hy Hydride de S Storag age 5 cylinders (10L each) • 50 liter (System: 206L) • 2.05 kg Hydrogen • 80.8 kWh • Total weight 255 kg • 0.282 kWh/kg • 96 cm ∆ H = -29.1 kJ/mol ∆ S = 109 J/mol K 25/10/17 10

  11. Energy De y Density o y of Metal al Hy Hydrides Conventional H 2 storage: • Unsafe: placement outside house • Large volume increases cost Highly reduced • volume (Fa Factor 25 25) 100% safe inside • building 25/10/17 11

  12. Metal H l Hydrid ide C Com ompressor ( (I) 5 – 50 bar 20 – 110 ° C Max. Flow at 50 bar: 50 g H2 /h Batch Operation: 4 steps process: Isothermal Absorption – Heating – Isothermal Desorption – Cooling 25/10/17 12

  13. Metal H l Hydrid ide C Com ompressor ( (II) GRZ HyCo, Product launch November 2017 25/10/17 13

  14. Methanati tion on R React ctor or • Reactor Volume: 700 cm 3 • Maximal temperature: 400°C • Maximal pressure: 15 bar • Maximal space velocity: 0.55 s -1 (1980 h -1 ) • Liquid cooling 25/10/17 14

  15. Outcome me • Display of the full conversion of solar energy to synthetic hydrocarbons with many components designed and built in-house • Several student projects performed on the topic • Publications • Small-scale demonstration of the conversion of renewable energy to synthetic hydrocarbons , N. Gallandat et al., RSC Sustainable Energy and Fuels, 2017 • An Analytical Model for the Electrolyser Performance Derived from Materials Parameters , N. Gallandat et al., JPEE, 2017 • Experimental Performance Investigation of a 2kW Methanation Reactor, N. Gallandat et al., RSC Sustainable Energy and Fuels, 2017 (Submitted) • Startup created (GRZ Technologies Ltd.) 25/10/17 15

  16. Ou Outl tlook ook • Commissioning (Q4 2017) • Q1 2018 – Q4 2019 Operation and Scientific Evaluation • Generation of an open-source database • Project in collaboration with industry: upscaling of the methanation reactor (x10) and waste heat recovery 25/10/17 16

  17. Synthes esis s of Met ethane a e and W nd Waste H e Hea eat Recovery ( (SOMA MAHR) SCCER HaE, Oct. 25 th , 2017 Gaznat SA: Dominique Luisier, Nicolas Mlynek, Gilles Verdan EPFL: Dr. Noris Gallandat, Emanuele Moioli, Mathias Béguin, Prof. Andreas Züttel 25/10/17 17

  18. Gaznat S SA Supplier of natural gas for Western Switzerland • HQ in Vevey, control room in Aigle (VD) • Turnover: CHF 484 mio • 12’800 GWh of energy sold per year (around 4% of • the global energy consumed in Switzerland) Operates 600 km of gazoducts and 50 gas metering • and regulating stations 25/10/17 18

  19. Natural al G Gas Grid 25/10/17 19

  20. Metering a and R Regulating S Station ( n (I) 25/10/17 20

  21. Metering a and R Regulating S Station ( n (II) Conventional layout • CO 2 CO CO 2 CO CO CO 2 CH 4 CH CH 4 CH CH 4 CH Burner 1 Burner 3 Burner 2 Q 2 Q 1 Q 3 CH CH 4 MRS CH 4 CH 50 - 80 50 80 bar, 5 5°C 5 bar, r, 5 5°C 25/10/17 21

  22. Metering a and R Regulating S Station ( n (III) Optimized configuration CO CO 2 • O 2 H 2 O (Exter ernal al S Source) e) H 2 O Chemical Reactor Electrolyser CO 2 + 4H 2 ➝ CH 4 + 2H 2 O Elec ectricity H 2 Efficiency: 50% ∆H R = -252 kJ/mol Q 1 Conventional Q 2 Burner Q 3 CH 4 CH CH CH 4 MRS 50 50 - 80 80 bar, r, 5°C CH 4 CH 5 bar, r, 5 5°C 25/10/17 22

  23. Methanati tion on R React ctor or P Perfor ormance ce 25/10/17 23

  24. Sabatie ier R Rea eact ctio ion First reported by Paul Sabatier (1854-1941) in 1902 • Discovered the first catalyst for hydrogenation (nickel based) • The catalyst used in the reactor is a 0.5%wt Ru on alumina • 25/10/17 24

  25. Goals ls & & Challe llenges Investigate and optimize the pressure p , the • temperature T and the space velocity v S of a methanation reactor in order to obtain a maximal CO 2 conversion into methane 25/10/17 25

  26. Thermodyn ynam amic E Equilibrium The thermodynamic equilibrium determines the theoretical • maximal conversion Set the pressure of the reactor constant and calculate the • maximal conversion as a function of the pressure and the temperature 25/10/17 26

  27. Conversio ion a as Funct ctio ion o of P Pres essure Temperature set to 300°C • Conversion calculated as • a function of the pressure 25/10/17 27

  28. Conversio ion a as Funct ctio ion o of T Tem emperatu ture The pressure is kept • constant The conversion is • calculated as a function of the temperature 25/10/17 28

  29. Reacti tion on K Kineti tics cs a and S Space V ce Veloci city The thermodynamic equilibrium • only describes the maximal conversion after an infinite period of time Practically, the notion of kinetics • has to be considered Typically, higher temperatures • favor fast kinetics There is a tradeoff to be found • between fast kinetics and high equilibrium conversion 25/10/17 29

  30. Des esign of of Experiments The domain of experiments was defined • based on the following three parameters: Numerical modeling • Literature • Reactor limitations • SV = [0.14-0.55 s -1 ] T = [200-400 o C] p = [1-5 bar] 25/10/17 30

  31. Reaction E Efficiency Three main parameters are used to determine the efficiency of • the reaction CO 2 conversion: • Methane yield: • The Selectivity: • 25/10/17 31

  32. Res esult lts • CO 2 conversion very close thermodynamic equilibrium • High thermal gradients within the reactor • Optimal temperature ranges from 220°C to 260°C • No degradation of the catalyst over > 200 hours of operation • High methane selectivity 25/10/17 32

Recommend


More recommend