electronic properties of graphene stacks
play

Electronic properties of graphene stacks. A. Castro-Neto (Boston U.) - PowerPoint PPT Presentation

Electronic properties of graphene stacks. A. Castro-Neto (Boston U.) N. M. R. Peres (U. Minho, Portugal) E. V. Castro, J. dos Santos (Porto), J. Nilsson (BU), A. Morpurgo (Delft), D. Huertas-Hernando (Trondheim), J. Gonzlez, F. G., M. P.


  1. Electronic properties of graphene stacks. A. Castro-Neto (Boston U.) N. M. R. Peres (U. Minho, Portugal) E. V. Castro, J. dos Santos (Porto), J. Nilsson (BU), A. Morpurgo (Delft), D. Huertas-Hernando (Trondheim), J. González, F. G., M. P. López-Sancho, T. Stauber, M. A. H. Vozmediano, B Wunsch (CSIC, Madrid) Outline � Electronic structure of graphite. � Electron-electron interaction in graphene. � Graphene stacks. Interlayer coupling. � Electronic structure. � Interaction effects. � Disorder. Out of plane conductivity. � Screening and surfaces. � Transport in curved graphene sheets. � Weak antilocalization effects.

  2. Some interesting references Single layer graphene. Electrically doped.

  3. And more interesting references Integer Quantum Hall effect in graphene.

  4. Electronic band structure J. W. McClure, Phys. Rev. 108 , 612 (1957) -The conduction band is built up from the unpaired π orbitals at the C atoms. -The crystal structure is stabilized by the σ bonds within the plane. -The hybridization between π orbitals in neighbouring planes cannot be neglected. ≈ γ 2.4eV Hybridization between in plane nearest neighbours: 0 ≈ γ 0.3eV Hybridization between out of plane nearest neighbours: 1

  5. Electronic band structure D. E. Soule, J. W. McClure, and L. B. Smith, Phys. Rev. 134 , A454 (1964). D. Marchand, C. Frétigny, M. Lagües, F. Batallan, Ch. Simon, I. Roseman, and R. Pinchaux, Phys. Rev. B 30 , 4788 (1984). The Fermi surface has electron and hole like pockets at the edges of the Brillouin zone. ≈ m 0.06m The effective masses are small, eff 0 The structure is consistent with Shubnikov-de Haas and photoemission experiments. UPS SdH

  6. Electronic band structure R. C. Tatar, and S. Rabii, Phys. Rev. B 25 , 4126 (1982). J.-C. Charlier, X. Gonze, and J.-P. Michenaud, Phys. Rev. B 43 , 4579 (1991). Graphite is a semimetal. ≈ × − 4 N( ε ) 1.2 10 states/(eV C atom) F ≈ × − 18 3 n 2.4 10 cm ≈ λ 50nm FT

  7. A graphene plane. The Dirac equation. = ∑ + + H t c c h . c . t i , s j , s n . n . ( ) r r r r   − − + + i k a i k b 0 t 1 e e   ≡ H ( ) r   r r r r r k + + i k a i k b t 1 e e 0 a   r r r [ r r ] ( ) ( ) ( ) r r ε = ± + + + − t 3 2 cos k a 2 cos k b 2 cos k a b r r k r r r b = + δ k k k 0   π r 4 1 3   = k ,   0 k 3 3 a 2 2   y ( ) r = a a 3 1 , 0 Dirac equation:   r 1 3 r   = b a 3 , k   2 2   + 0   0 k ik 3 ta   x y ≅ H k   1 3 r − r k ik 0 2 i k a = − + e i   0 x x y 2 2 1 3 r r i k b = − − e i 0 2 2

  8. Related systems. C 60 � Threefold coordination � The curvature is induced by five-fold rings � There is a family of quasispherical compounds The valence orbitals are derived from π � atomic orbitals. The Dirac equation on a sphere?

  9. Lattice frustration as a gauge potential. J. González, F. G. and M. A. H. Vozmediano, Phys. Rev. Lett. 69 , 172 (1992) � A fivefold ring defines a disclination. � The sublattices are interchanged. � The Fermi points are also interchanged. � These transformations can be achieved by means of a gauge potential.   0 1 r r r   ∇ → ∇ − i i A   1 0   r r ∫ Φ = A d l The flux Φ is determined by the total rotation induced by the defect.

  10. Continuum model of the fullerenes. � Dirac equation on a spherical surface. � Constant magnetic field (Dirac monopole). ( ) ( )   + θ v 1 i 1 l cos h ∂ − ∂ + Ψ = ε Ψ F i   ( ) ( ) θ φ θ θ a b R sin 2 sin   ( ) ( )  − θ  v 1 i 1 l cos h ∂ + ∂ + Ψ = ε Ψ F i   ( ) ( ) θ φ θ θ b a R sin 2 sin   v F h [ ] ( ) ( ) ε = + − + ≥ J J 1 l l 1 J l J R

  11. Coulomb interactions Non Fermi liquid behavior of quasiparticle lifetimes. Expts: S. Yu, J. Cao, C. C. Miller, D. A. Mantell, R. J. D. Miller, and Y. Gao, Phys. Rev. Lett. 76 , 483 (1996). Theory: J. González, F. G., and M. A. H. Vozmediano Phys. Rev. Lett. 77 , 3589 (1996) N(E) Single graphene planes: Absence of screening. Perturbation theory leads to logarithmic divergences. The expansion has similar properties to that for 1D metallic systems (Luttinger liquids). Large coupling constant: e /v =2-5 2 E F E F Deviations from Fermi liquid behavior. Limits of validity: High energies > 0.3eV. v v Neglects electron-phonon interaction. screened interaction

  12. Renormalization of the Coulomb interaction. r ( ) ( ) r r r r ∫ = Ψ + σ ∇ Ψ + 2 H iv d r r r F 2 e 1 r r ( ) ( ) r r ( ) ( ) r r ∫∫ + + + Ψ Ψ Ψ Ψ 2 2 d r d r r r r r r r 1 2 1 1 2 2 π − 8 r r 1 2 Dimensional analysis: [ ] [ ] ≡ l t 1 [ ] [ ] � The interaction is marginal in any ≡ ≡ H H dimension (as in QED). K int l � The interaction is mediated by photons in three dimensional space. 1 [ ] Ψ ≡ � The interaction breaks the Lorentz D 2 l invariance of the Dirac equation. [ ] ≡ 2 0 e l

  13. Renormalization of the Coulomb interaction. J. González, F. G. and M. A. H. Vozmediano., Nucl. Phys. B 424 , 595 (1994)  Λ  2 r r ( ) e r   Hartree Fock selfenergy: Σ ≈ σ k k log r   π 8 k   r r k ′ k r 2 2 r ( ) e k Π ω = k , i Bare polarizability: r 0 8 2 2 − ω 2 v k F The vortex corrections are finite (to all orders).

  14. Renormalization of the Coulomb interaction. − Ψ = Ψ 1 2 Z R 0 One loop calculation: ∂ Σ Renormalization of the − = 1 Z particle residue. ∂ ω ( ) Σ ω ∝ ω Im ∂ 2 2 e 8 e Λ = Lowest order RG flow: ∂ Λ π 2 v v F F The coupling constant goes to zero at low energies.

  15. Experimental consequences? C. L. Kane and E. J. Mele, Phys. Rev. Lett. 93 , 197402 (2004) A. Lanzara et al , unpublished. The electronic self energy due to the long range The combined effects of disorder and electron- Coulomb interaction modifies the dependence electron interactions lead to a non monotonous of the gap on the radius in semiconducting dependence of the quasiparticle lifetime on nanotubes. disorder.

  16. Renormalization of the Coulomb interaction. J. González, F. G. and M. A. H. Vozmediano, Phys. Rev. B 59 , R2474 (1999) = + RPA summation: + +   ∂ RG flow equation: 8 arccos g 4   Λ = + − g g ( which can be analytically   ∂ Λ π π 2 − 2 1 g extended to g > 1)   The coupling constant always flows to zero at low energies.

  17. Non perturbative phase transitions. D.V. Khveshchenko, Phys. Rev. Lett. 87 , 246802 (2001). Compensation between low density of states and unscreened interaction Stoner criterium: r q 2 e = ↔ = U N(E ) 1 N 1 r c F f q v F For sufficiently large couplings, a charge density wave phase is induced

  18. Interlayer hopping M. A. H. Vozmediano, M. P. López-Sancho, and F. G., Phys. Rev. Lett. 89 , 166401 (2002); ibid, Phys. Rev. B 68 , 195122 (2003) . In plane interactions reduce the interlayer coupling. Similar effect as in the cuprate superconductors. t Interchain hopping in Luttinger liquids Extended hopping X.G. Wen, Phys. Rev. B 42 , 6623 (1990). F. G. and G. Zimanyi, Phys. Rev. B 47 , 501 (1993). S. Chakravarty and P.W. Anderson, Phys. Rev. Lett. 72 , 3859 (1994). J.M.P. Carmelo, P.D. Sacramento, and F. G., Phys. Rev. B 55 , 7565 (1987) A.H. Castro-Neto and F. G., Phys. Rev. Lett. 80 , 4040 (1998). See also: Local hopping C.L. Kane and M.P.A. Fisher, Phys. Rev. Lett. 68 , 1220 (1992)

  19. Exchange instability in graphene. N. M. R. Peres, F. G. and A. H. Castro Neto, Phys. Rev. B 72 , 174406 (2005) E E k k Kinetic energy Exchange energy The exchange energy favors a ferromagnetic ground state. This instability is expected in a low density 2DEG.

  20. Exchange instability in graphene. The interband exchange energy increases. The intraband exchange energy decreases. There is a competition between the two effects. The instability requires too high coupling values. The instability is enhanced in the presence of disorder (neglecting localized states).

  21. The graphene bilayer. E. McCann and V. Fal’ko, Phys. Rev. Lett. 96 , 086805 (2006) Bilayer. Electronic structure. ( )  +  0 v k ik 0 0  F x y  ( ) − v k ik 0 t 0   F x y ⊥ ≡ H ( )   − 0 t 0 v k ik   ⊥ F x y ( )   + 0 0 v k ik 0   F x y 2 r 2 v F k ε ≈ r k t ⊥

Recommend


More recommend