Effect of feedback strength in coupled spiking neural networks Javier Iglesias 1 , 2 in collaboration with ıa-Ojalvo 1 and Alessandro E.P . Villa 2 Jordi Garc´ 1 Departament de F´ ısica i Enginyeria Nuclear, Universitat Polit` ecnica de Catalunya, Terrassa, Spain 2 Grenoble Institut des Neurosciences-GIN, NeuroHeuristic Research Group, Universit´ e Joseph Fourier, Grenoble, France < javier.iglesias@upc.edu >
introduction: laser experiment 1 C.M. Gonz´ alez, M.C. Torrent and J. Garc´ ıa-Ojalvo (2007), Controlling the leader- laggard dynamics in delay-synchronized lasers , Chaos 17:033122
introduction: laser experiment 2 experimental numerical C.M. Gonz´ alez, M.C. Torrent and J. Garc´ ıa-Ojalvo (2007), Controlling the leader- laggard dynamics in delay-synchronized lasers , Chaos 17:033122
introduction: synaptogenesis and synaptic pruning 3 12 4 neurons / mm x10 10 3 8 6 4 20 2 8 synapses / mm x10 15 NB 0.5 1 2 5 10 adult aged 3 (74-90) years 10 5 NB 0.5 1 5 10 15 20 40 60 80 100 years modified from Huttenlocher (1979), Synaptic density in human frontal cortex – developmental changes and effects of aging , Brain Research, 163:195–205
stemdivision celldifferentiation synaptogenesis celldeath synapticpruning model: network ontogeny 4
stemdivision celldifferentiation synaptogenesis celldeath synapticpruning stemdivision celldifferentiation synaptogenesis celldeath synapticpruning model: network ontogeny 4
synapticpruning synaptogenesis celldeath synaptogenesis celldifferentiation stemdivision synapticpruning celldeath celldifferentiation stemdivision synapticpruning celldeath synaptogenesis celldifferentiation stemdivision model: network ontogeny 4
synapticpruning synapticpruning celldeath synaptogenesis celldifferentiation stemdivision synapticpruning celldeath synaptogenesis celldifferentiation stemdivision celldeath synaptogenesis celldifferentiation stemdivision synapticpruning celldeath synaptogenesis celldifferentiation stemdivision model: network ontogeny 4 actuators sensors
synapticpruning synaptogenesis celldeath synaptogenesis celldifferentiation stemdivision synapticpruning celldeath synaptogenesis celldifferentiation stemdivision synapticpruning celldeath celldifferentiation stemdivision stemdivision celldifferentiation synaptogenesis celldeath synapticpruning stemdivision celldifferentiation synaptogenesis celldeath synapticpruning model: network ontogeny 4 actuators actuators sensors sensors
synapticpruning synapticpruning celldeath synaptogenesis celldifferentiation stemdivision synapticpruning celldeath synaptogenesis celldifferentiation stemdivision synapticpruning celldeath synaptogenesis celldifferentiation stemdivision celldeath celldeath stemdivision celldifferentiation synaptogenesis celldeath synapticpruning stemdivision celldifferentiation synaptogenesis synapticpruning stemdivision celldifferentiation synaptogenesis model: network ontogeny 4 actuators actuators actuators sensors sensors sensors
synapticpruning stemdivision synapticpruning stemdivision celldifferentiation synaptogenesis celldeath synapticpruning celldifferentiation celldifferentiation synaptogenesis celldeath synapticpruning stemdivision celldifferentiation synaptogenesis celldeath synaptogenesis celldeath stemdivision celldifferentiation stemdivision celldifferentiation synapticpruning synaptogenesis celldeath celldeath synaptogenesis celldifferentiation stemdivision synapticpruning synapticpruning stemdivision celldeath synaptogenesis model: network ontogeny 4 actuators actuators actuators actuators sensors sensors sensors sensors
model: neuromimetic model leaky integrate and fire 5 Type I = 80% excitatory ~190 excitations Type II = 20% inhibitory B(t) = -76 [mV] V rest = -40 [mV] θ i S(t) w(t) V(t) = 8 [ms] τ mem = 2 [ms] t refract = 5 [spikes/s] λ i n = 50 ~115 inhibitions � V i ( t +1) = V rest[ q ] +(1 − S i ( t )) · (( V i ( t ) − V rest[ q ] ) · k mem[ q ] )+ w ji ( t )+ B i ( t ) j S i ( t ) = H ( V i ( t ) − θ q i ) w ji ( t + 1) = S j ( t ) · A ji ( t ) · P [ q j ,q i ] B i ( t + 1) = P reject ( λ q i ) · n · P [ q 1 ,q i ]
model: spike timing-dependent synaptic plasticity (STDP) 6 a b synaptic change synaptic change -40 0 40 -100 -50 0 50 100 ti m e [m s ] ti m e [m s ] c d e synaptic change synaptic change synaptic change -60 0 60 -25 0 25 -40 0 40 ti m e [m s ] ti m e [m s ] ti m e [m s ] modified from Roberts and Bell, Spike timing dependent synaptic plasticity in biological systems , Biol. Cybern., 87:392–403, 2002
model: STDP and synaptic pruning 7 time S (t) i post L ji ( t + 1) = L ji ( t ) · k act[ q j ,q i ] +( S i ( t ) · M j ( t )) − ( S j ( t ) · M i ( t )) pre S (t) time j
model: STDP and synaptic pruning 7 time time S (t) S (t) i i post post -M (t) i L ji ( t + 1) = L ji ( t ) · k act[ q j ,q i ] +( S i ( t ) · M j ( t )) M (t) − ( S j ( t ) · M i ( t )) j pre pre S (t) S (t) time time j j
model: STDP and synaptic pruning 7 time time time S (t) S (t) S (t) i i i post post post -M (t) -M (t) i i L ji ( t + 1) = L ji ( t ) · k act[ q j ,q i ] +( S i ( t ) · M j ( t )) M (t) M (t) − ( S j ( t ) · M i ( t )) j j pre pre pre S (t) S (t) S (t) time time time j j j L (t) ji
model: STDP and synaptic pruning 7 time time time S (t) S (t) S (t) i i i post post post -M (t) -M (t) i i L ji ( t + 1) = L ji ( t ) · k act[ q j ,q i ] +( S i ( t ) · M j ( t )) M (t) M (t) − ( S j ( t ) · M i ( t )) j j pre pre pre S (t) S (t) S (t) time time time j j j L (t) ji L ji (t) 4 A ji (t) 2 1 0 0 50 100 150 time [s] w ji ( t + 1) = S j ( t ) · A ji ( t ) · P [ q j ,q i ]
model: experimental layout 8 stimulus S in I out I in injection N 1 N 2
model: experimental layout 8 stimulus S in I out I in injection N 1 N 2 feedback F in F out
model: experimental layout 8 stimulus S in I out I in injection N 1 N 2 feedback F in F out • size of I : 500, 1000, 2000, 4000.
model: experimental layout 8 stimulus S in I out I in injection N 1 N 2 feedback F in F out • size of I : 500, 1000, 2000, 4000. • relative size of F : 0, 0.25, 0.5, . . . , 2.75, 3 × I .
model: experimental layout 8 stimulus S in I out I in injection N 1 N 2 feedback F in F out • size of I : 500, 1000, 2000, 4000. • relative size of F : 0, 0.25, 0.5, . . . , 2.75, 3 × I . • connectivity: fixed 100’000 projections, 100 projections/neuron.
model: complex stimulus 9 t = 3 t = 4 t = 5 t = 6 t = 1 t = 2 t=duration stimulation (50, 100 onset or 200 ms) A [...] B [...] every 2 seconds 10 groups of 40 units activated in sequence (5% stimulated units) during 100 time steps (AA, BB, AB, BA, AB | BA) animated sequences are available for stimuli A and B.
model: effective spike train 10 stimulus S in I out I in injection experiment N 1 N 2 feedback – F in F out stimulus control S in I out I in injection N 1 N 2 = effective spike train time A B C
results: fixed 100’000 projections 11 N1 N2 60 60 cells with modified activity ρ [%] cells with modified activity ρ [%] 50 50 N1 N2 Ψt Ψt 40 40 30 30 20 20 10 10 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 F / I F / I × I = 500 ; ∗ I = 1000 ; � I = 2000 ; � I = 4000 .
results: 100 projections per neuron 12 N1 N2 60 60 cells with modified activity ρ [%] cells with modified activity ρ [%] 50 50 N1 N2 Ψu Ψu 40 40 30 30 20 20 10 10 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 F / I F / I + I = 250 ; × I = 500 ; ∗ I = 1000 ; � I = 2000 ; � I = 4000 .
results: network effect 13 fixed 100000 proj. 100 proj / neuron 3 3 2.5 2.5 2 2 N1 N1 u Ψt Ψ 1.5 1.5 ρ / ρ ρ / ρ N2 N2 Ψt u Ψ 1 1 0.5 0.5 0 0 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 F / I F / I + I = 250 ; × I = 500 ; ∗ I = 1000 ; � I = 2000 ; � I = 4000 .
results: spike insertion/deletion per cell 14 F = I = 1000 1.0 N1 0.8 0.6 cells [%] 0.4 0.2 0 1.0 N2 0.8 0.6 cells [%] 0.4 0.2 0 0 250 500 750 1000 spikes
results: timing of the spike insertion/deletion 15 F = I = 1000 10 N1 8 spikes [10 3 ] 6 4 2 0 10 N2 8 spikes [10 3 ] 6 4 2 0 0 125 250 375 500 time [s]
conclusion 16 • changes to network activity are induced by injection/feedback
conclusion 16 • changes to network activity are induced by injection/feedback • changes are more important in N2 than in N1
conclusion 16 • changes to network activity are induced by injection/feedback • changes are more important in N2 than in N1 • both insertion and deletion of spikes are observed
Recommend
More recommend