dynamics of pruning in simulated large scale spiking
play

Dynamics of pruning in simulated large-scale spiking neural networks - PowerPoint PPT Presentation

Dynamics of pruning in simulated large-scale spiking neural networks Javier Iglesias 1 , 2 , 3 joint work with J. Eriksson 2 , F . Grize 1 , M. Tomassini 1 , A.E.P . Villa 2 , 3 Nonlinear Dynamics and Noise in Biological Systems Workshop: Torino,


  1. Dynamics of pruning in simulated large-scale spiking neural networks Javier Iglesias 1 , 2 , 3 joint work with J. Eriksson 2 , F . Grize 1 , M. Tomassini 1 , A.E.P . Villa 2 , 3 Nonlinear Dynamics and Noise in Biological Systems Workshop: Torino, 2004-04-19 1: Information Management Department, University of Lausanne, Switzerland 2: Laboratory of Neuro-heuristics, University of Lausanne, Switzerland 3: Laboratory of Neurobiophysics, University Joseph-Fourier, France < javier.iglesias@hec.unil.ch >

  2. description of the experiment 1 • model synaptic pruning after over-growth observed during brain maturation • size: 100 × 100 2D lattice, torus wrapped • duration: 1 · 10 6 time steps (ms) • compatible with hardware implementation • Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., Villa, A.E.P ., submitted . Dynamics of pruning in simulated large-scale spik- ing neural networks. BioSystems.

  3. leaky integrate and fire neuro-mimetic model 2 Type I = excitatory 80% ~250 excitations Type II = inhibitory 20% B(t) = = -76 [mV] V rest = -40 [mV] θ i S(t) w(t) V(t) = 8 [ms] τ mem t refract = 1 [ms] λ i = 10 [spikes/s] n = 50 ~100 inhibitions � V i ( t +1) = V rest[ q ] +(1 − S i ( t )) · (( V i ( t ) − V rest[ q ] ) · k mem[ q ] )+ w ji ( t )+ B i ( t ) j S i ( t ) = H ( V i ( t ) − θ q i ) w ji ( t + 1) = S j ( t ) · A ji ( t ) · P [ q j ,q i ] B i ( t + 1) = P reject ( λ q i ) · n · P [ q 1 ,q i ]

  4. digression: random number generators 3 acceptance/rejection Poisson process of λ = 10 spikes/s, n = 10 7 100000 100000 80000 80000 60000 60000 40000 40000 20000 20000 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 default GSL GNU Scientific default C RNG implementation Library RNG implementation (GNU/Linux, MacOS X, ...)

  5. STPD - spike timing dependent plasticity 4 w ji ( t + 1) = S j ( t ) · A ji ( t ) · P [ q j ,q i ] delta weight LTP j i time LTD A ji ( t ) ∈ { 0 , 1 , 2 , 4 } for P [1 , 1] , LTP : Long Term Potentiation A ji ( t ) = 1 for the others; LTD : Long Term Depression P [1 , 1] = P [1 , 2] = +1 . 34[ mV ] P [2 , 1] = P [2 , 2] = − 2 . 40[ mV ]

  6. pruning dynamics 5 a b c L 4 L 4 L 4 A 4 L 3 L 3 L 3 A 3 L 2 L 2 L 2 A 2 L 1 L 1 L 1 A 1 L 0 L 0 L 0 time time time L ji ( t + 1) = k act · L ji ( t ) + ( S i ( t ) · M j ( t )) − ( S j ( t ) · M i ( t )) L ji ∈ ]0 , L max ] τ act = 11000 [ms] M i ( t + 1) = S i ( t ) · M max + (1 − S i ( t )) · ( M i ( t ) · k learn ) L max = 10 · M max τ learn = 2 · τ mem

  7. laying out the two unit types 6 space-filling quasi-random Sobol distribution of 20% of inhibitory neurons on the 100 × 100 2D lattice

  8. random local connectivity 7 a b c d probability +50 +50 500 0.6 e i 0.4 cell count 0.2 y y 0 0 250 0.0 e e 50 0 y -50 -50 0 -50 0 -50 0 +50 0 200 400 -50 0 +50 x -50 50 x x connection count e f g h probability +50 +50 500 0.6 0.4 cell count 0.2 y y 0 250 0 0.0 i i 50 i e -50 0 y -50 0 -50 0 -50 0 +50 -50 0 +50 0 200 400 x -50 50 x x connection count

  9. result 1: effect of random generator seed 8 30 n = 100 25 20 count 15 10 R 1 R 2 5 0 0 1 2 3 4 5 percentage of synapses [A 4 ] Same simulation settings, except random generator seed: variation Same network, different random generator seed: small variation (not shown)

  10. result 2: no change in preferential direction or length 9 a b c d 50 1.5 50 1.5 ratio ratio 5 y y t = 1 10 0 1.0 0 1.0 -50 0.5 -50 0.5 -50 0 50 0 25 50 71 -50 0 50 0 25 50 71 x distance x distance 50 1.5 50 1.5 ratio ratio 5 y y t = 2 10 0 1.0 0 1.0 -50 0.5 -50 0.5 -50 0 50 0 25 50 71 -50 0 50 0 25 50 71 x distance x distance 50 1.5 50 1.5 ratio ratio t = 8 10 5 y y 0 1.0 0 1.0 -50 0.5 -50 0.5 -50 0 50 0 25 50 71 -50 0 50 0 25 50 71 x distance x distance

  11. result 3: effect of size of network 10 60 4 5 active synapses [A 4 ] (% ) 6 7 50 3 2 1 40 8 30 20 9 t steady 10 10 0 0 2 4 6 8 t max [A 4 ] (10 4 )

  12. discussion 11 • lots of oversimplified hypotheses • bimodal distribution of activation levels at steady state • no distortion of geometrical properties induced • try other synaptic transfer functions • use more realistic transfer functions for other projection types • add content-related inputs

Recommend


More recommend