ee201 mse207 lecture 4 harmonic oscillator
play

EE201/MSE207 Lecture 4 Harmonic oscillator Important for optics - PowerPoint PPT Presentation

EE201/MSE207 Lecture 4 Harmonic oscillator Important for optics (photons) and phonons, though they are massless particles. Also rare examples like electrons in a very smooth Q.Well. Recently became important for NEMS. Very important as a


  1. EE201/MSE207 Lecture 4 Harmonic oscillator Important for optics (photons) and phonons, though they are massless particles. Also rare examples like electrons in a very smooth Q.Well. Recently became important for NEMS. Very important as a fundamental example, starting point for many problems. 𝑦 = 𝐺 𝑛 = βˆ’ 𝑙 Classical physics 𝐺 = βˆ’π‘™π‘¦ 𝑛 𝑦 𝑦 𝑒 = 𝐡 cos(πœ•π‘’ + πœ’) πœ• = 𝑙 𝑛 spring constant k π‘Š 𝑦 = 𝑙𝑦 2 𝐺 = βˆ’ π‘’π‘Š = 1 2 π‘›πœ• 2 𝑦 2 Potential energy 𝑒𝑦 2 π‘Š 𝑦 (by the way, π‘Š = π‘ˆ = 𝐹 2) οƒ— 𝑦 ο€­ ο€­

  2. Harmonic oscillator 𝑦 = 𝐺 𝑛 = βˆ’ 𝑙 Classical physics 𝐺 = βˆ’π‘™π‘¦ 𝑛 𝑦 𝑦 𝑒 = 𝐡 cos(πœ•π‘’ + πœ’) πœ• = 𝑙 𝑛 spring constant k π‘Š 𝑦 = 𝑙𝑦 2 = 1 2 π‘›πœ• 2 𝑦 2 Potential energy 2 π‘Š 𝑦 Quantum mechanics οƒ— βˆ’ ℏ 2 𝑒 2 πœ” 𝑒𝑦 2 + 1 2 π‘›πœ• 2 𝑦 2 πœ” = πΉπœ” TISE 𝑦 2𝑛 Need to find energies and corresponding wavefunctions ο€­ ο€­ Two ways to solve: 1) solve as a differential equation (Hermite polynomials, etc.) 2) solve using a trick: algebraic technique of ladder operators We will consider only the second way (important for second quantization, similar for angular momentum, spin, etc.)

  3. Ladder operators (raising/lowering or creation/annihilation) 1 1 βˆ“β„ πœ– 𝑏 Β± = βˆ“π‘— π‘ž + π‘›πœ• 𝑦 = πœ–π‘¦ + π‘›πœ•π‘¦ Define 2β„π‘›πœ• 2β„π‘›πœ• (hat means operator) 𝐼 = 1 𝐼 1 π‘ž 2 + π‘›πœ• π‘ž 2 + π‘›πœ• 𝑦 2 𝑦 2 β„πœ• = Idea why: 2𝑛 2β„π‘›πœ• 𝑏 2 +𝑐 2 = (𝑏 + 𝑗𝑐)(𝑏 βˆ’ 𝑗𝑐) However, operators usually do not commute: 𝐡 𝐢 β‰  𝐢 𝐡 1 𝑏 βˆ’ 𝑏 + = 2β„π‘›πœ• 𝑗 π‘ž + π‘›πœ• 𝑦 βˆ’π‘— π‘ž + π‘›πœ• 𝑦 = 1 β„πœ• βˆ’ 𝑗 𝐼 𝑦 2 βˆ’ π‘—π‘›πœ•( π‘ž 2 + π‘›πœ• = 2β„π‘›πœ• [ 𝑦 π‘ž βˆ’ π‘ž 𝑦)] = 2ℏ ( 𝑦 π‘ž βˆ’ π‘ž 𝑦) 𝑦 ? This is called commutator, 𝐡, 𝐢 ≑ 𝐡 𝐢 βˆ’ 𝐢 What is 𝑦 π‘ž βˆ’ π‘ž 𝐡

  4. Commutator [ 𝑦, π‘ž] 𝑦 𝑔 𝑦 = 𝑦 βˆ’π‘—β„ πœ–π‘” πœ– 𝑦 π‘ž βˆ’ π‘ž πœ–π‘¦ βˆ’ βˆ’π‘—β„ πœ–π‘¦ 𝑦 𝑔 𝑦 = 𝑗ℏ 𝑔(𝑦) 𝑦, π‘ž = 𝑗ℏ Therefore Now back to calculation of 𝑏 βˆ’ 𝑏 + β„πœ• βˆ’ 𝑗 𝐼 β„πœ• + 1 𝐼 𝑏 βˆ’ 𝑏 + = 2ℏ 𝑦 π‘ž βˆ’ π‘ž 𝑦 = 2 [ 𝑏 βˆ’ , 𝑏 + ] = 1 β„πœ• βˆ’ 1 𝐼 𝑏 + 𝑏 βˆ’ = Similarly 2 𝑏 βˆ’ + β„πœ• ( 𝑏 + 1 2)πœ” = 𝐹 πœ” TISE can be written as β„πœ• ( 𝑏 βˆ’ 𝑏 + βˆ’ 1 2)πœ” = 𝐹 πœ” or as

  5. If πœ” 𝑦 satisfies TISE with energy 𝐹 , then 𝑏 + πœ” Lemma also satisfies TISE, with energy 𝐹 + β„πœ• . (This is why 𝑏 + is called raising operator) Proof 1 2 1 2 𝑏 βˆ’ + 𝑏 + + 𝐼( 𝑏 + πœ”) = β„πœ• 𝑏 + 𝑏 + πœ” = β„πœ• 𝑏 + 𝑏 βˆ’ 𝑏 + πœ” 𝑏 + 1 2 πœ” = = β„πœ• 𝑏 + 𝑏 βˆ’ 𝑏 + + 𝐼 + β„πœ• πœ” = 𝑏 + 𝐹 + β„πœ• πœ” = β„πœ• + 1 𝐼 2 + 1 = 𝐹 + β„πœ• ( 𝑏 + πœ”) 2 Q.E.D. If πœ” 𝑦 satisfies TISE with energy 𝐹 , then 𝑏 βˆ’ πœ” Lemma 2 also satisfies TISE, with energy 𝐹 βˆ’ β„πœ• . (similar proof) Now main trick β„πœ• If we have one solution πœ” 𝑦 , we can construct β„πœ• many other solutions (ladder of solutions ) β„πœ• 𝐹 Process of going down should stop somewhere ( 𝐹 β‰₯ 0 ) β„πœ• Then 𝑏 βˆ’ πœ” 0 = 0 (further derivation is simple) β„πœ•

  6. Ground state of harmonic oscillator 1 ℏ 𝑒 π‘’πœ” 0 πœ–π‘¦ = βˆ’ π‘›πœ• 𝑏 βˆ’ πœ” 0 = 0 β‡’ 𝑒𝑦 + π‘›πœ•π‘¦ πœ” 0 𝑦 = 0 β‡’ ℏ π‘¦πœ” 0 2β„π‘›πœ• πœ” 0 𝑦 = 𝐡 exp βˆ’ π‘›πœ• 2ℏ 𝑦 2 Solution 1 4 πœ” 0 𝑦 = π‘›πœ• exp βˆ’ π‘›πœ• Find 𝐡 from normalization 2ℏ 𝑦 2 πœŒβ„ ground state πΌπœ” 0 = β„πœ• 𝑏 βˆ’ + 𝐼 = β„πœ•( 𝑏 + 1 2) What is its energy? 2 πœ” 0 𝐹 0 = 1 2 β„πœ• (β€œzero - point” energy, vacuum energy) Now can find all stationary states by repeatedly applying 𝑏 + to the ground state

  7. Stationary states of harmonic oscillator 𝑏 + π‘œ exp βˆ’ π‘›πœ• 1 2ℏ 𝑦 2 πœ” π‘œ 𝑦 = 𝐡 π‘œ π‘œ = 0, 1, 2, … 𝐹 π‘œ = π‘œ + 2 β„πœ• 𝐡 π‘œ is normalization constant Useful relations: 𝑏 + πœ” π‘œ 𝑦 = π‘œ + 1 πœ” π‘œ+1 (𝑦) therefore 𝑏 βˆ’ πœ” π‘œ 𝑦 = π‘œ πœ” π‘œβˆ’1 (𝑦) πœ” π‘œ = 1 𝑏 + π‘œ πœ” 0 π‘œ! A few lowest levels: 1 4 πœ” 0 𝑦 = π‘›πœ• exp βˆ’ π‘›πœ• 2ℏ 𝑦 2 πœŒβ„ 1 4 πœ” 1 𝑦 = π‘›πœ• 2π‘›πœ• 𝑦 exp βˆ’ π‘›πœ• 2ℏ 𝑦 2 πœŒβ„ ℏ 1 4 πœ” 2 𝑦 = π‘›πœ• 2 π‘›πœ• 2 exp βˆ’ π‘›πœ• ℏ 𝑦 2 βˆ’ 2ℏ 𝑦 2 πœŒβ„ 2

  8. Stationary states of harmonic oscillator Fig. 2.7 from Griffiths’ book

  9. General stationary states for harmonic oscillator πœ” π‘œ = 1 π‘œ + 1 𝑏 + π‘œ πœ” 0 𝐹 π‘œ = 2 β„πœ• π‘œ! Explicitly 𝐼 π‘œ (𝜊) exp βˆ’ 𝜊 2 πœ” π‘œ 𝑦 = π‘›πœ• 1 4 1 πœŒβ„ 2 2 π‘œ π‘œ! π‘›πœ• 𝜊 = πœŒβ„ 𝑦 𝐼 π‘œ (𝜊) – Hermite polynomials General solution of SE ∞ Ξ¨ 𝑦, 𝑒 = π‘œ=0 𝑑 π‘œ πœ” π‘œ 𝑦 exp βˆ’π‘— π‘œ + 1 2 πœ•π‘’ 𝑑 π‘œ 2 = 1 ∞ π‘œ=0

  10. Free particle βˆ’ ℏ 2 d 2 πœ” π‘Š 𝑦 = 0 TISE 𝑒𝑦 2 = πΉπœ” 2𝑛 2𝑛𝐹 πœ” 𝑦 = 𝐡𝑓 𝑗𝑙𝑦 + 𝐢𝑓 βˆ’π‘—π‘™π‘¦ 𝑙 = solution: ℏ 𝑙 – β€œwave vector”, 𝑙 = 2𝜌 πœ‡ with time dependence: Ξ¨ 𝑦, 𝑒 = 𝐡 exp 𝑗𝑙 𝑦 βˆ’ ℏ𝑙 + 𝐢 exp βˆ’π‘—π‘™ 𝑦 + ℏ𝑙 2𝑛 𝑒 2𝑛 𝑒 propagates to the right propagates to the left with velocity 𝑀 π‘žβ„Ž = ℏ𝑙 with the same velocity 2𝑛 2𝐹 𝑛 = ℏ𝑙 𝑀 classical = interesting that classically (twice larger) 𝑛 (will discuss later, difference between phase and group velocities) Not normalizable! What to do? Construct a wave packet.

  11. Wave packet ∞ 𝜚(𝑙) exp 𝑗 𝑙𝑦 βˆ’ ℏ𝑙 2 1 𝑙 > 0 to the right Ξ¨ 𝑦, 𝑒 = 2𝑛 𝑒 𝑒𝑙 𝑙 < 0 to the left 2𝜌 βˆ’βˆž energy is not well-defined ∞ 1 At 𝑒 = 0 𝜚(𝑙) 𝑓 𝑗𝑙𝑦 𝑒𝑙 Ξ¨ 𝑦, 0 = just a Fourier transform 2𝜌 βˆ’βˆž Remind Fourier transform: ∞ ∞ 1 1 𝐺(𝑙) 𝑓 𝑗𝑙𝑦 𝑒𝑙 𝑔(𝑦) = 𝑔(𝑦) 𝑓 βˆ’π‘—π‘™π‘¦ 𝑒𝑦 𝐺(𝑙) = 2𝜌 2𝜌 βˆ’βˆž βˆ’βˆž So if we know Ξ¨(𝑦, 0) , then can find 𝜚 𝑙 , and then know Ξ¨(𝑦, 𝑒) ∞ 1 Ξ¨(𝑦, 0) 𝑓 βˆ’π‘—π‘™π‘¦ 𝑒𝑦 𝜚(𝑙) = 2𝜌 βˆ’βˆž Normalization: ∞ ∞ 2 𝑒𝑦 = 1 𝜚(𝑙) 2 𝑒𝑙 = 1 Ξ¨ 𝑦, 0 is equivalent to βˆ’βˆž βˆ’βˆž 𝜚 𝑙 is like wavefunction in k -space

  12. Phase and group velocities πœ• = ℏ𝑙 2 ∞ 1 Ξ¨ 𝑦, 𝑒 = 𝜚(𝑙) exp 𝑗 𝑙𝑦 βˆ’ πœ•π‘’ 𝑒𝑙 2𝑛 2𝜌 βˆ’βˆž 𝜚(𝑙) Assume that 𝜚(𝑙) is concentrated around 𝑙 0 , then  οƒΉ ο€­ ο€­ οƒͺ οƒΊ   πœ• 𝑙 β‰ˆ πœ• 0 + π‘’πœ• 𝑒𝑙 𝑙 βˆ’ 𝑙 0 = πœ• 0 + πœ• β€² Δ𝑙 𝑙 οƒ— 𝑙 0 0 ∞ 1 𝜚(𝑙 0 + Δ𝑙) exp 𝑗 𝑙 0 + Δ𝑙 𝑦 βˆ’ 𝑗 πœ• 0 + πœ• β€² Δ𝑙 𝑒 𝑒Δ𝑙 Ξ¨ 𝑦, 𝑒 β‰ˆ ο€­ 2𝜌 βˆ’βˆž ο€­ ∞ 1 exp 𝑗𝑙 0 𝑦 βˆ’ πœ• 0 𝜚(𝑙 0 + Δ𝑙) exp 𝑗Δ𝑙 𝑦 βˆ’ πœ• β€² 𝑒 = 𝑒 𝑒Δ𝑙 𝑙 0 2𝜌 βˆ’βˆž group velocity: 𝑀 𝑕𝑠 = πœ• β€² = π‘’πœ• 𝑒𝑙 phase velocity: 𝑀 π‘žβ„Ž = πœ• 0 𝑙 0 𝑀 𝑕𝑠 = π‘’πœ• 𝑒𝑙 = ℏ𝑙 So, in quantum case 𝑛 = 𝑀 classical In our case 𝑀 𝑕𝑠 = 2𝑀 π‘žβ„Ž ℏ𝑙 2 (2𝑛) πœ• = 𝑀 π‘žβ„Ž = πœ• 𝑙 = ℏ𝑙 (shape faster than ripples) (For waves on water 𝑀 π‘žβ„Ž = 2𝑀 𝑕𝑠 ) 2𝑛

  13. Another normalization Actually, it is difficult to work with wavepackets, so in practice people usually work with extended waves 1 2𝜌 e 𝑗𝑙𝑦 πœ” 𝑙 𝑦 = This function satisfies β€œnormalization” ∞ βˆ— 𝑦 πœ” 𝑙 β€² 𝑦 𝑒𝑦 = πœ€(𝑙 βˆ’ 𝑙 β€² ) πœ” 𝑙 βˆ’βˆž Some properties of delta-function πœ€(𝑦) ∞ ∞ 𝑓 𝑗𝑏𝑦 𝑒𝑦 = 2𝜌 πœ€(𝑏) 𝑔 𝑦 πœ€ 𝑦 𝑒𝑦 = 𝑔(0) βˆ’βˆž βˆ’βˆž ∞ (from Fourier transform theorem) 𝑔 𝑦 πœ€ 𝑦 βˆ’ 𝑏 𝑒𝑦 = 𝑔(𝑏) βˆ’βˆž

Recommend


More recommend