W.Heil EDMs of stable atoms and molecules outline • Introduction • EDM sensitivity • Recent progress in -EDMs paramagnetic atoms/molecules -EDMs diamagnetic atoms • Conclusion and outlook Solvay workshop „ Beyond the Standard model with Neutrinos and Nuclear Physics“ Brussels, Nov. 29th – Dec. 1st, 2017
Our world is composed of matter ... and not antimatter n 400/cm 3 (CMB) n b 0.2 protons/m 3 n n b 10 b 6 10 n SM prediction based on observed flavor-changing CP-violation (CKM-matrix) n n 10 b 18 b n
SM CP-odd phases 10 10 ~ O ( 1 ) CKM QCD constrained experimentally (d n , d Hg ) explains CP in K and B meson (strong CP problem) mixing and decays Electric dipole moments (EDMs) of elementary particles (flavor-diagonal CP ) EDM measurement free of SM background 10 38 32 34 d e e cm d n ~ 10 10 e cm fourth order Khriplovich, Zhitnitsky 86 electroweak
Fundamental theory TeV Wilson coefficients QCD Low energy d , n d parameters p Nucleus 3 d , t , He level nuclea r EDMs of paramagnetic EDMs of Atom/molecule atoms and molecules diamagnetic atoms level atomic (Tl,YbF,ThO ,…) (Hg,Xe,Ra.Rn,..) Atoms in traps (Rb,Cs,Fr) Solid state
Atomic EDM + + 𝐹 𝑓𝑦𝑢 𝐹 𝑗𝑜𝑢 Ԧ 𝑒 𝐹𝐸𝑁 - - 𝐹 𝑓𝑔𝑔 = 𝐹 𝑓𝑦𝑢 + 𝐹 𝑗𝑜𝑢 = 𝜁 ⋅ 𝐹 𝑓𝑦𝑢 = 0 complete shielding: ⇒ Δ𝐹 𝐹𝐸𝑁 = − Ԧ 𝑒 𝐹𝐸𝑁 ⋅ 𝐹 𝑓𝑔𝑔 = − Ԧ 𝑒 𝐹𝐸𝑁 ⋅ 𝜁 ⋅ 𝐹 𝑓𝑦𝑢 = 0 L.I.Schiff ( PR 132 2194,1963) : EDM of a system of non-relativistic charged point particles that interact electrostatically can not be measured : 𝜁 = 0
Relativistic violation of Schiff screening (requires the use of relativistic electron radial wavefunctions) Paramagnetic EDMs – „Schiff enhancement “ Atoms Polar molecules
Finite size violation of Schiff screening Diamagnetic EDMs – „Schiff suppression “ For a finite nucleus, the charge and EDM have different spatial distributions S- Schiff moment: Schiff moment is dominant CP-odd N-N interaction for large atoms S 17 d k 10 e cm ( k Hg ~ -3 ) A A 3 e fm (low energy parameters) 2 2 3 d ~ 10 Z R / R d ~ O ( 10 ) d A N A nuc nuc Nuclear deformation can enhance heavy atom EDMs (e.g., 225Ra, 223Rn )
Heavy atoms (relativistic treatment) + finite size: 0 d e 0 d atom 0 ~ Z 3 2 d e P,T-odd eN interaction Tensor-Pseudotensor ~Z 2 G F C T ~Z 3 G F C S Scalar- Pseudoscalar Nuclear EDM – finite size Schiff moment induced by P,T-odd N-N interaction ~10 -25 [ecm] 𝜃 𝑒 𝑜 , 𝑒 𝑞 , ҧ 0 , ҧ 1 , ҧ 2 General finding: ഥ Θ 𝑅𝐷𝐸 Paramagnetic EDMs: „Schiff enhancement “ ( >> 1) Diamagnetic EDMs: „Schiff suppression “ ( << 1) Diamagnetic atoms: Phys. Rep. 397 (04) 63; Phys. Rev. A 66 (02) 012111. 𝑒( 129 𝑌𝑓) = 10 −3 𝑒 𝑓 + 5.2𝑦10 −21 𝐷 𝑈 + 5.6𝑦10 −23 𝐷 𝑇 + 6.7𝑦10 −26 𝜃 ≈ 6.7𝑦10 −26 𝜃
EDM precision experiments (upper limits) Xe
EDM search: Ramsey type phase measurements ො 𝑭, 𝑪 𝑭, 𝑪 𝒜 𝒜 ො EDM sensitivity (FOM) shift dS / d E 2 d ( E ) N / resolution noise 1 d ˆ ˆ x x E SNR ext ˆ x 2 B 2 d E / B E noise dS N Signal d 𝑂 Precession phase magnetic EDM phase bias phase ( B ) shift ( E )
EDMs of paramagnetic atoms and molecules (Tl, YbF, ThO , …) Interaction energy -d e 𝜁 E • 𝜁 d e E amplification -585 for Tl 𝜁 atom containing electron electric field 𝜻 10 9 for ThO (E lab 100 V/cm)
2. advantage of YbF , ThO : No coupling v E to motional magnetic field electron spin is coupled to internuclear axis and internuclear axis is coupled to E v E = 0 no motional systematic error
Experimental setup: general scheme B E beam of atoms or molecules state readout state preparation Spin precession Observable: phase difference = 2 (m B B ± d e 𝜁 E) / ħ ( ) H ThO: H ; J 1 metastable state (ground rotational level; J=1), lifetime ~ 2ms M = -1 M = 0 M = +1
0 E eff N = -1 E lab H N = +1 E 0 eff M = -1 M = 0 M = +1
0 E eff B N = -1 E lab B B H B N = +1 B E 0 eff M = -1 M = 0 M = +1
d e E 0 E eff eff B N = -1 E lab B d e E B eff H B d e E N = +1 d eff e E B eff E 0 eff M = -1 M = 0 M = +1
C P = +1 P = -1 Preparation/Readout Lasers d e E 0 E eff eff B N = -1 E lab B d e E B eff H B d e E N = +1 d eff e E B eff E 0 eff M = -1 M = 0 M = +1
N N N ˆ i i x , , e M 1 , e M 1 , / 2 N g B d E / B e eff
Results Science 343 (2014) 269 3 3 2 . 6 4 . 8 3 . 2 10 [ / ] ( ) / 2 . 6 4 . 8 3 . 2 10 [ rad rad / s s ] ( d d E E W C ) / stat sys e eff stat sys e eff S S using E eff = 84 GV/c m , W S (molecule-specific constant) Phys.Rev. A 84 , 052108 (2011) C S = 0 29 29 d 2 . 1 3 . 7 2 . 5 10 ecm d 8 . 7 10 ecm ( 90 % CL ) e stat sys e d e = 0 9 C S 5 . 9 10 ( 90 % CL )
199 Hg EDM experiment PRL 116 , 161601 (2016) 19 cm use of buffer gases: no EDM false effects due to geometric phases systematic effects in units of 10 -32 ecm E 10 kV / cm
Effective data taking: 252 days
Results: Hg-EDM 30 d Hg 7 . 4 10 ecm (95% CL) Limits on CP-violating observables from 199 Hg EDM limit
Courtesy of B. Santra
Towards long spin-coherence times (T 2 *) SQUID 15 detector 10 5 B SQUID [pT] 0 -5 Motional narrowing regime: diff <<1/( B) -10 -15 (G. D. Cates, et al., Phys. Rev. A 37, 2877) 0,0 0,2 0,4 time [s] 1 1 1 12 * T T T 8 2 1 2, field 4 2 1 4 R 4 2 2 2 2 h B SQUID [pT] 4 B B 2 B R p B * T He 60 . 2 0 . 1 1 , x 1 , y 1 , z 0 T 175 D 2 , 2, field -4 * Long T : -8 2 100 h T 1 p ~ mbar , R ~ 5 cm , B ~ T -12 1 0 2 4 6 8 10 time [h]
Comagnetometry to get rid of magnetic field drifts 406.68 drift ~ 1pT/h B [nT] 406.67 10 -5 Hz/h 406.66 0 5 1 0 1 5 2 0 t [h] B 0 3 He (13 Hz) 129 Xe (4,7 Hz) He 0 He const . L , He L , Xe He Xe Xe Xe
Subtraction of deterministic phase shifts I. Earth‘s rotation = He - He / Xe Xe rem = - Earth II. Ramsey-Bloch-Siegert shift He * t / T self shift ~ S e 2 0 Xe 2 cross-talk ~ * t / T S e 2 0 * * * * t / T t / T 2 t / T 2 t / T ( t ) c a t a e a e b e b e 2 , He 2 , Xe 2 , He 2 , Xe Earth He Xe He Xe EDM
Measurement sensitivity: 129 Xe electric dipole moment h h 4 E d Xe E E B o Rosenberry and Chupp, PRL 86,22 (2001) E o E E 27 0 . 7 3 . 3 0 . 1 10 ecm d Xe Observable: weighted frequency difference He , EDM Xe , EDM Xe , EDM ( ) ( ) He Xe He Xe He , EDM Xe , EDM Xe , EDM ( ) ( ) He Xe He Xe h 4 d sensitivity limit: Xe E He Xe
Recommend
More recommend