ECOC2010 Invited Paper DA and AD Converters in SiGe Technology: Speed and Resolution for Ultra High Data Rate Applications Tobias Ellermeyer, Rolf Schmid, Anna Bielik, Jörg Rupeter and Michael Möller MICRAM Microelectronic GmbH, Bochum, Germany www.micram.com SEPTEMBER 19-23, 2010 – TORINO, ITALY T. Ellermeyer et al.: DA and AD Converters in SiGe Technology.
Introduction TX RX ADC DAC TIA DSP 90° DSP ADC DAC TIA Simple example w/o PolMux Simple example w/o PolMux / direct detection DA converter needed for: AD converter needed for: • Pre-Emphasis • Equalization in binary transmission • Higher Level QAM / DQPSK • Higher Level QAM / DQPSK • OFDM • OFDM • Multi-Format / Adaptive Transmitters • Multi-Format / Adaptive Receivers page 2 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
State-of-the-Art converters CMOS SiGe HBT/BiCMOS III/V HBT Phys. resolution 8 bit 6 bit D Rise/fall time (20/80) tr > 24 ps tr = 12 ps Full scale swing A 0.8 Vpp 1.6 Vpp C 8 bit 6 bit 6 bit 6 bit tr > 30 ps tr n/a tr = 30ps tr n/a 1.0 Vpp 1.0 Vpp 0.3 Vpp n/a 12 GSa/s 20 GSa/s 32 GSa/s 43 GSa/s 50 GSa/s 34 GSa/s Phys. resolution 3 bit 4 bit 6 bit 8 bit A ENOB 2.3 bit 3.2 bit 3.9 bit 5.7 bit f(ENOB) GHz 10 GHz 8 GHz 18 GHz 17 GHz D Full scale swing 1.0 Vfs 0.24 Vfs 1.2 Vfs 1.0 Vfs C 5 bit 6 bit 4 bit 3.5 bit 4 bit 3.2 bit 10 GHz 22 GHz 15 GHz 1.0 Vfs 0.28 Vfs 0.5 Vfs 10 GSa/s 20 GSa/s 30 GSa/s 40 GSa/s 56 GSa/s 24 GSa/s 35 GSa/s page 3 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
Technology Choice (ADC) T/H T/H AD C T/H AD C 0° 17 GHz (100G) >30 GHz (400G) AD C T/H T/H TIA/AGC AD C T/H T/H 90° f S /n T/H CLK/n 17 GHz (100G) 100GbE: 28/56 GSa/s; >30 GHz (400G) >4 GHz (100G) CLK 180° >7.5 GHz (400G) 17 GHz BW T/H ADC 400GbE: 56-224 GSa/s; 270° 17 GHz (100G) f S /4 28-112 GHz BW >30 GHz (400G) CLK/4 Bottleneck CMOS SiGe TIA / AGC - External IC (or add. bits instead - Integrated on ADC AGC) First T/H Stage - Bandwidth - Resolution / Droop - Driving of next stages - Clock jitter - Clock jitter AD conversion - Slow ADC cores - Fast ADC cores - Synchronization / calibration - No complex logic - Signal / Clock distribution page 4 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
Technology Choice (DAC) Interleaving of DA converter cores Single core DA converter 100G: 17 GS/s MUX DAC 100G: 34 GS/s MUX DAC AMUX 100G: 17 GS/s MUX DAC • Needs analog multiplexer (AMUX) • Significantly lower switching noise • Switching noise visible at output • Better accuracy/linearity • AMUX needs • Better device matching • High bandwidth • Good linearity • AMUX sensitive to pattern effects (e.g. through self heating) SiGe: Goal is to omit modulator driver. Max. output swing of latest SiGe devices is 0.8Vse/1.6Vdiff. page 5 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
Pros/Cons of SiGe Devices Pro‘s Con‘s • Bandwidth >25 GHz possible • Only medium complexity possible (50k BJT) • High Gain => DSP needs CMOS • High output swing • Two chips: Massive bus between CMOS • Good device matching and SiGe required • Include TIA/AGC and MZM driver Two Chip solution 3D Packaging with Through Silicon Vias (TSV) Additional benefits: • Always best digital CMOS node • Any proprietary DSP possible • DAC / ADC independent of CMOS Ref: Roger Allan in Electronic Design page 6 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
Topologies for High Speed DA-Converter Cores a) R2R Ladder J J All stages have identical devices K K Resistor matching R 2R 2R R R 2R 2R R R R R OUT n L Output impedance matching L OUT p R R R L L Timing matching D D 0 D D 1 D D 2 D D 3 0 1 2 3 L Power (much power dissipated L I 0 I 0 I 0 I 0 in internal resistors) Examples: 4-bit cores b) Weighted currents R R J J Common current summing point OUT n => better impedance matching OUT p D D 0 D D 1 D D 2 D D 3 0 1 2 3 J J less power J smaller area J I 0 I 0 I 0 I 0 8 4 2 K K Timing also critical (diff. currents in CML stages) … continued on next slide … page 7 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
Topologies for High Speed DA-Converter Cores c) Segmented DAC (continued) R R J J Strongly reduces glitches J No additional current J D D 0 D D 1 K K 0 K K 1 K K 2 0 1 0 1 2 for output stage K K K 0 1 2 L Additional logic required L Binary Equal I weighted I I currents I 0 I 0 0 0 0 D D K K K 8 4 2 2 3 2 2 1 0 2 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 D D 2 3 6-bit Segmented DAC 6-bit Binary weighted currents (3 LSB binary weighted / 3 MSB thermometer code) page 8 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
DAC30 Demonstrator Chip • 6 bit segmented DAC • Demonstrator with FPGA interface (24 serial lines) • 34 GSa/s • Single core • Half rate clock • Configuration register 5.07 mm 5.07 mm page 9 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
DAC30 Demonstrator Chip Integral Nonlinearity vs. Code Sampling rate dc – 34 GSa/s 0,2 0,15 Resolution 6 bit 0,1 Rise/Fall (20/80%) 12 ps 0,05 INL < 0.2 LSB INL (LSB) 0 800 mV,se -0,05 Full scale swing 1600 mV,diff 1250mVpp -0,1 1600mVpp -0,15 ENOB 5.27 1900mVpp -0,2 SFDR 46.9 dB 0 8 16 24 32 40 48 56 64 Code Total power diss. 12.5 W DAC output voltage vs. code 1000 Converter core power 0.4 W 750 Output (differential) mV 5 . 0 7 x 5 . 0 7 Die size 500 mm ² 250 I n f i n e o n Technology 0 b7hf200 540mVpp -250 0 . 4 0 x 0 . 4 3 1060mVpp Converter core size -500 mm ² 1640mVpp -750 DA core incl. last mux/ 0 . 8 0 x 1 . 3 0 1930mVpp FF mm ² -1000 0 8 16 24 32 40 48 56 64 ( ‡ 28 GSa/s, 875 MHz sine wave output, Code measured with spectrum analyser up to Nyquist page 10 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. frequency) SEPTEMBER 19-23, 2010 – TORINO, ITALY
DAC30 Output Waveforms l Measurements performed with chips mounted in sockets (cf. Slide “Measurement setup“) l Driven by Virtex-4 (overclocked to 7 Gb/s) l Measured with Tektronix CSA8000 sampling scope (50 GHz bandwidth) page 11 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
Signal Impairments through Passive Components • Signal impairments due to passive components (e.g. traces, cables, connectors, package, etc.) DAC r 2 r 1 • Essential but challenging to maintain high frequency performance and effective resolution. • For example: Reflection • Reflection should be less than 1 LSB: 1 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ Number ¡ of ¡ bits r r b ⋅ ≤ = 1 2 b 2 • Written in dB: r r 1 2 b 6 . 02 ≤ − ⋅ − dB dB For 8-bit resolution and | r1 |=| r2 | : Reflections in DAC output signal è Return loss < -24 dB over the whole bandwidth on both ends (6-bit: <-18 dB) page 12 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
Topologies for High Speed AD-Converter Cores a) Massive Parallelization (SAR) T/H ADC T/H • ADC cores typically SAR converters J SAR: Slow but simple architecture / binary J output ADC T/H J J Bandwidth is determined by first set of T/H T/H L L Clock distribution difficult T/H ADC L Lots of calibration L ADC T/H b) Flash ADC Massive Parallelization J J Extremely fast K K Only low resolution: 6 bit => 2^(n-1)=63 comparators in parallel DECODE L L Complex logic (thermometer code to binary) Thermometer -> Binary • Also often used: Half-Flash/Pipeline Flash FF FF FF FF FF FF FF FF c) Interpolation/Folding J J Fast flash type converter J J Number of comparators reduced to 2^(n-1)/m T/H by folding m times (typ. m=2) L L Complex logic (thermometer code) Flash Converter K Analog stages required K page 13 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
Topologies for High Speed AD-Converter Cores Integer Binary Gray d) Serial ripple converter 0 6‘b000000 6‘b000000 K Little bit slower than flash K 1 6‘b000001 6‘b000001 J Simple architecture (number of amps / flip-flops equal J 2 6‘b000010 6‘b000011 to resolution) … … … J J Direct output of gray coded binary 31 6‘b011111 6‘b010000 32 6‘b100000 6‘b110000 K Highly analog concept K 33 6‘b100001 6‘b110001 K Propagation delay through each stage critical K … … … 62 6‘b111110 6‘b100001 63 6‘b111111 6‘b100000 Vin=V5 V4 V3 V2 V1 V0 CLK Q5 Q4 Q3 Q2 Q1 Q0 V5 V4 V3 V2 V1 V0 Vin Q5 Q4 Q3 Q2 Q1 Q0 page 14 T. Ellermeyer et al.: DA and AD Converters in SiGe Technology. SEPTEMBER 19-23, 2010 – TORINO, ITALY
Recommend
More recommend