easiness amplification and circuit
play

Easiness Amplification and Circuit Lower Bounds Cody Murray MIT - PowerPoint PPT Presentation

Easiness Amplification and Circuit Lower Bounds Cody Murray MIT Ryan Williams MIT Motivation We want to show that . Problem: It is currently open even whether


  1. Easiness Amplification and Circuit Lower Bounds Cody Murray MIT Ryan Williams MIT

  2. Motivation We want to show that ๐‘ธ โŠ„ ๐‘ป๐‘ฑ๐’‚๐‘ญ ๐‘ท ๐’ . Problem: It is currently open even whether ๐‘ป๐‘ฉ๐‘ผ โŠ‚ ๐‘ป๐‘ฑ๐’‚๐‘ญ ๐Ÿ๐Ÿ๐’ โ€ผ! ๐‘ผ๐‘ฑ๐‘ต๐‘ญ ๐Ÿ‘ ๐‘ท ๐’ The best known lower bound is just over 3n [FGHKโ€™15] .

  3. Motivation We want to show that ๐‘ธ โŠ„ ๐‘ป๐‘ฑ๐’‚๐‘ญ ๐‘ท ๐’ . One way to attempt to prove this is by contradiction: assume P has linear size circuits, then obtain a series of absurd conclusions that results in a contradiction. Plenty of work [Lip94,FSW09,SW13,Din15] has been done on this front, but no contradiction has been found. Assuming some problems are easy, can you show that more problems are easy?

  4. Uniform Circuit Lower Bounds Non-uniform models: It is open whether TIME [๐Ÿ‘ ๐‘ท ๐’ ] ๐‘ป๐‘ฉ๐‘ผ has non- uniform circuits of size 10n. Extremely uniform models: โ€˜LOGTIME - uniform circuit sizeโ€™ and โ€˜timeโ€™ coincide up to polylogarithmic factors. [PF โ€™79] Medium uniform models: For some k, there exists a problem in TIME ๐’ ๐’ that is not computable with P-uniform linear size circuits. [SWโ€™13] (The proof is non-constructive, and there is no explicit bound on the value of k.)

  5. Main Result Let เทจ ๐‘ƒ ๐‘œ = ๐‘œ โ‹… log ๐‘œ ๐‘’ for a constant ๐‘’ > 0 . Amplification Lemma: For every ๐œป, ๐œบ > ๐Ÿ, ๐‘ผ๐‘ฑ๐‘ต๐‘ญ ๐’ ๐Ÿ+๐œป โŠ‚ ๐‘ป๐‘ฑ๐’‚๐‘ญ เทฉ ๐‘ท ๐’ โŸน ๐‘ป๐‘ธ๐‘ฉ๐‘ซ๐‘ญ[ ๐’Ž๐’‘๐’‰ ๐’ ๐Ÿ‘โˆ’๐œบ ] โŠ‚ ๐‘ป๐‘ฑ๐’‚๐‘ญ[๐’ ๐Ÿ+๐’‘ ๐Ÿ ] . These results also hold when ๐‘ˆ๐ฝ๐‘๐น[๐‘œ 1+๐œ ] is replaced with SAT!

  6. Some Consequences of Easiness Amplification โ€ข ๐‘ผ๐‘ฑ๐‘ต๐‘ญ ๐’ ๐Ÿ+๐œป โŠ‚ ๐‘ป๐‘ฑ๐’‚๐‘ญ เทฉ ๐’ ] โŸน ๐‘น๐‘ช๐‘ฎ โˆˆ ๐‘ป๐‘ฑ๐’‚๐‘ญ[๐Ÿ‘ เทฉ ๐‘ท ๐‘ท ๐’ โŸน ๐‘น๐‘ช๐‘ฎ โˆˆ ๐‘ป๐‘ฑ๐’‚๐‘ญ[๐Ÿ‘ เทฉ โ€ข ๐‘ป๐‘ฉ๐‘ผ โˆˆ ๐‘ป๐‘ฑ๐’‚๐‘ญ เทฉ ๐‘ท( ๐’) ] ๐‘ท ๐’ If easy problems (or SAT) have very small circuits, then QBF has subexponential size circuits. โ€ข For every ๐œป > ๐Ÿ, General ๐’ ๐œป -Circuit Composition (an explicit problem in ๐‘ผ๐‘ฑ๐‘ต๐‘ญ[๐’ ๐Ÿ+๐œป ] ) does not have LOGSPACE-uniform SIZE[ ๐’ ๐Ÿ+๐’‘(๐Ÿ) ] circuits. No LOGSPACE algorithm on input 1 ๐‘œ can print a circuit of size ๐‘œ 1+๐‘(1) that solves this problem on inputs of size n.

  7. Circuit t-Composition Given: โ€ข A Boolean circuit C over AND/OR/NOT of size n with a(n) inputs and a(n) outputs โ€ข An input ๐‘ฆ โˆˆ 0,1 ๐‘ ๐‘œ Compute: ๐ท ๐‘ข ๐‘ฆ = (๐ท โˆ˜ ๐ท โˆ˜ โ‹ฏ โˆ˜ ๐ท)(๐‘ฆ) i.e. C composed t times on the input x. This can also be expressed as a decision problem by including an index ๐‘— = 1,2, โ€ฆ , ๐‘(๐‘œ) as input, and outputting the ith bit of ๐ท ๐‘ข ๐‘ฆ .

  8. Circuit t-Composition Given: โ€ข A Boolean circuit C over AND/OR/NOT of size n with a(n) inputs and a(n) outputs โ€ข An input ๐‘ฆ โˆˆ 0,1 ๐‘ ๐‘œ Compute: ๐ท ๐‘ข ๐‘ฆ = (๐ท โˆ˜ ๐ท โˆ˜ โ‹ฏ โˆ˜ ๐ท)(๐‘ฆ) i.e. C composed t times on the input x. Circuit-t-Composition can be solved in O(n t) time and O(n) space by simply simulating the given circuit t times. It can also be solved in ฮฃ 2 ๐‘ˆ๐ฝ๐‘๐น ๐‘ƒ ๐‘œ + ๐‘ข โ‹… ๐‘(๐‘œ) by guessing the intermediate values in the composition, then universally verifying that each intermediate value yields the next one in the sequence.

  9. Proof of the Amplification Lemma โ€œCircuit t - Compositionโ€ Circuit

  10. Proof of the Amplification Lemma โ€œHardcodeโ€ C into this circuit

  11. Proof of the Amplification Lemma Let C be the Circuit t-Composition Circuit

  12. Proof of the Amplification Lemma If the input circuit computes ๐ท ๐‘ข ๐‘™ (๐‘ฆ) , then the new circuit computes ๐ท ๐‘ข ๐‘™+1 (๐‘ฆ)

  13. Proof of the Amplification Lemma Reminder of the Amplification Lemma: For every ๐œป, ๐œบ > ๐Ÿ, ๐‘ผ๐‘ฑ๐‘ต๐‘ญ ๐’ ๐Ÿ+๐œป โŠ‚ ๐‘ป๐‘ฑ๐’‚๐‘ญ เทฉ ๐‘ท ๐’ โŸน ๐‘ป๐‘ธ๐‘ฉ๐‘ซ๐‘ญ[ ๐’Ž๐’‘๐’‰ ๐’ ๐Ÿ‘โˆ’๐œบ ] โŠ‚ ๐‘ป๐‘ฑ๐’‚๐‘ญ[๐’ ๐Ÿ+๐’‘ ๐Ÿ ] . To simplify the proof, I will instead show that LOGSPACE has เทจ ๐‘ƒ(๐‘œ) size circuits. If ๐‘ˆ๐ฝ๐‘๐น[๐‘œ 1+๐œ ] has เทจ ๐‘ƒ(๐‘œ) circuits, then so does Circuit ๐‘œ ๐œ - Composition.

  14. Proof of the Amplification Lemma Suppose Circuit t-Composition on inputs of length n has circuits of size ๐‘œ log ๐‘œ ๐‘’ . Let ๐‘€ โˆˆ ๐‘€๐‘ƒ๐ป๐‘‡๐‘„๐ต๐ท๐น . Then there is machine M that runs in ๐‘œ ๐‘ time and b log n space for some b > 0 that computes L. โ€ฒ : 0,1 ๐‘ log ๐‘œ โ†’ Fix some ๐‘ฆ โˆˆ 0,1 ๐‘œ . Define a machine ๐‘ ๐‘ฆ 0,1 ๐‘ log ๐‘œ that takes as input a configuration c of size (b log n), simulates M on x for one step from configuration c, then outputs the resulting configuration cโ€™. This machine has circuits C of size เทจ ๐‘ƒ(๐‘œ) . If this circuit is composed with itself, then ๐ท ๐‘™ (๐‘ฆ) simulates M on x for k steps. If ๐‘™ > ๐‘œ ๐‘ , then when the input is the starting configuration the output of this composition is the final configuration.

  15. Proof of the Amplification Lemma If the ๐‘™ ๐‘ขโ„Ž circuit has size ๐‘› , then the ๐‘™ + 1 ๐‘ขโ„Ž circuit has size ๐‘› log ๐‘› ๐‘’ .

  16. Proof of the Amplification Lemma If the original Circuit C was of size m, then the ๐‘™ ๐‘ขโ„Ž circuit ( ๐ท ๐‘ข ๐‘™ (๐‘ฆ) ) is of size O(๐‘› log ๐‘› ๐‘’โ‹…๐‘™ )

  17. Proof of the Amplification Lemma If the original Circuit C was of size m, then the ๐‘™ ๐‘ขโ„Ž circuit ( ๐ท ๐‘ข ๐‘™ (๐‘ฆ) ) is of size O(๐‘› log ๐‘› ๐‘’โ‹…๐‘™ ) So for constant k, the size of the circuit computing ๐ท ๐‘ข ๐‘™ (๐‘ฆ) is เทจ ๐‘ƒ(|๐ท|) . ๐‘ โ€ฒ , then the final Let ๐‘ข = ๐‘œ ๐œ , and ๐‘™ = ๐œ . If the circuit C computes ๐‘ ๐‘ฆ configuration of L can be computed with a เทจ ๐‘ƒ(๐‘œ) circuit, which means that L โˆˆ ๐‘‡๐ฝ๐‘Ž๐น[ เทจ ๐‘ƒ ๐‘œ ] . Since L was arbitrary, we can conclude that all of LOGSPACE has circuits of size เทจ ๐‘ƒ(๐‘œ) .

  18. Conclusion + Open Problems We give a new technique that โ€œamplifiesโ€ small -circuit upper bounds. This leads to new circuit lower bounds and connections between the circuit complexity of other problems such as SAT and QBF. Open: What else can we conclude from assuming ๐‘ถ๐‘ธ โŠ† ๐‘ป๐‘ฑ๐’‚๐‘ญ[๐‘ท ๐’ ] ? How well can QBF be solved with these circuits? Open: Can the LOGSPACE-uniform circuit lower bound be improved to a P-uniform lower bound? Alternatively, can we generalize the result to prove that ๐”๐‰๐๐… ๐’ ๐’ โŠˆ LOGSPACE- uniform SIZE [๐’ ๐’โˆ’๐œป ] ? Open: Can we prove P โŠˆ ๐‘ธ ๐‘ถ๐‘ธ -uniform SIZE[O(n)]? Is this equivalent to P โŠˆ SIZE[O(n)]? It can be observed that P โŠˆ SIZE[O(n)] is equivalent to P โŠˆ ๐‘„ ฮฃ 2 ๐‘„ โ€“ uniform SIZE[O(n)].

  19. End

Recommend


More recommend