Dynamics of Inhomogeneous Polymeric Fluids Douglas R. Tree Materials Research Laboratory University of California, Santa Barbara CFDC Meeting February 3, 2016
Can we predict the microstructure of polymers? ◮ Microstructure dictates properties A very general ◮ Microstructure depends on process problem! history Polymer Blends Polymer membranes ◮ commodity ◮ clean water plastics (e.g. ◮ medical filters HIPS) ◮ block polymer Saedi et al. Can. J. Chem. Eng. (2014) thin films www.leica-microsystems.com Polymer composites Biological patterning ◮ bulk hetero- ◮ Eurasian jay junctions feathers ◮ nano- composites Parnell et al. Sci. Rep. (2015) Hoppe and Sariciftci J. Mater. Chem. (2006) 2
How can we model microstructure formation? A difficult challenge ◮ Complex thermodynamics out of equilibrium ◮ Spatially inhomogeneous (multi-phase) ◮ Multiple modes of transport (diffusion & convection) ◮ Large separation of length/time scales Continuum fluid dynamics Self-consistent field theory (SCFT) Fredrickson. J. Chem. Phys. 6810 (2002) Hall et al. Phys. Rev. Lett. 114501 (2006) Key idea – cheaper models Classical density functional theory Teran et al. Phys. Fluid. (2008) (CDFT)/“phase field” models 3
Multi-fluid models Two-fluid model The Rayleighian ◮ Momentum equation A Lagrangian expression of “least for each species energy dissipation” for overdamped systems ( Re = 0 ). ◮ Large drag enforces cons. of momentum ˙ free energy R [ { v i } ] = F [ { v i } ] dissipation + Φ[ { v i } ] − λG [ { v i } ] constraints δR ∂φ i & ∂t = −∇ · ( φ i v i ) δ v i Transport equations de Gennes. J. Chem Phys. (1980) Doi and Onuki. J Phys (Paris). 1992 4
Multi-fluid models Two-fluid model The Rayleighian ◮ Momentum equation A Lagrangian expression of “least for each species energy dissipation” for overdamped systems ( Re = 0 ). ◮ Large drag enforces cons. of momentum ˙ free energy R [ { v i } ] = F [ { v i } ] dissipation + Φ[ { v i } ] − λG [ { v i } ] constraints δR ∂φ i & ∂t = −∇ · ( φ i v i ) δ v i Transport equations de Gennes. J. Chem Phys. (1980) Doi and Onuki. J Phys (Paris). 1992 4
PFPD Software Phase-Field Polymer Dynamics Efficient, parallelized, object-oriented C++ program for simulating the flow and phase behavior of inhomogeous polymeric fluids. Scripts and plotting tools Operators Models Time Int. - Pseudospectral - Ternary FHG - Model B - Block polymers - Model H - Hybrid (FD) BCs Field vector/matrix operations Field library (KTD) 5
PFPD Software Phase-Field Polymer Dynamics Efficient, parallelized, object-oriented C++ program for simulating the flow and phase behavior of inhomogeous polymeric fluids. Scripts and plotting tools Operators Models Time Int. - Pseudospectral - Ternary FHG - Model B - Block polymers - Model H - Hybrid (FD) BCs Field vector/matrix operations Field library (KTD) 5
Integration of transport equations Model H Model B ∂φ i � Convection-Diffusion ∂t + v · ∇ φ i = ∇ · M ij ( { φ } ) ∇ µ j j µ i = δF [ { φ i } ] Chemical Potential δφ i N − 1 η ( { φ } )( ∇ v + ∇ v T ) � � � 0 = −∇ p + ∇ · − φ i ∇ µ i Momentum i =0 0 = ∇ · v Incompressibility 6
Stable and efficient time integration Semi-implicit stabilization ◮ Unconditionally stable for practical use ◮ Inexpensive relative to fully implicit methods φ n +1 − φ n = ∇ · [ M ( φ ) ∇ µ n i ] + m ∇ 2 µ n +1 − m ∇ 2 µ n lin lin ∆ t Variable time-stepping ◮ Step-doubling (50% greater cost per step) ◮ Enables much larger step sizes for slow dynamics 7
State-of-the-art method for hydrodynamics Variable- η Stokes equation ◮ Fixed-point method ◮ Enhanced efficiency with 0 = −∇ p − ∇ · Π ∇ v + ∇ v T �� − Anderson mixing � � + ∇ · η ( φ ) − 1 st order continuation 0 = ∇ · v ◮ Solution for both PS and hybrid discretizations Doi and Edwards. (1986) ∇ 2 p = ∇∇ : (Θ n − Π) 1000000 t=500 (new code) v n +1 = 1 t=500 (old code) η ∗ ∇ · (Θ n − Π − I p ) ∇ 2 ˆ ) simulation time (sec model B(new code) 100000 where, 10000 Θ n = [ η ( φ ) − η ∗ ] ∇ v n + ( ∇ v n ) T � � 1000 (Figure courtesy of Tatsu Iwama) 1 100 10000 viscosity ratio (eta_P/eta_r) 8
PFPD Software Phase-Field Polymer Dynamics Efficient, parallelized, object-oriented C++ program for simulating the flow and phase behavior of inhomogeous polymeric fluids. Scripts and plotting tools Operators Models Time Int. - Pseudospectral - Ternary FHG - Model B - Hybrid - Block polymers - Model H (FD) BCs Field vector/matrix operations Field library (KTD) 9
Non-periodic Boundary Conditions Pseudo-spectral derivatives Finite differences ∂f ∂x ≈ f i +1 − f i − 1 ∂f ∂x ≈ FFT − 1 [ − ik x ˆ f ] 2∆ x ◮ periodic or homogeneous ◮ flexible BCs BCs only ◮ accuracy depends on ◮ very good accuracy order of FD x A hybrid method ◮ Periodic BCs in y (PS) y ◮ Arbitrary BCs in x (FD) 10
Spinodal decomposition example (diffusion only) Hybrid simulation ◮ Left and right BCs ∂ 3 φ p ∂φ p ∂x = 0 , ∂x 3 = 0 ∂ 3 φ n ∂φ n ∂x = 0 , ∂x 3 = 0 ◮ Top and bottom are periodic ◮ (Top) Polymer concentration ◮ (Bottom) Slice through y = 32 . Notice that the slope at x = 0 and x = 64 is zero. (Parameters: N = 5 , χ = 1 . 361 , κ = 4 ) 11
PFPD Software Phase-Field Polymer Dynamics Efficient, parallelized, object-oriented C++ program for simulating the flow and phase behavior of inhomogeous polymeric fluids. Scripts and plotting tools Operators Models Time Int. - Pseudospectral - Ternary FHG - Model B - Hybrid - Block polymers - Model H (FD) BCs Field vector/matrix operations Field library (KTD) 12
How can we model the free energy? Field theory Analytical Numerical simulations approximations approximations (SCFT/CL) to a field theory to a field theory 10 1 Γ - 1 0.1 0.01 0.01 0.1 1 10 kR g / 2 1 / 2 13
How can we model the free energy? Field theory Analytical Numerical simulations approximations approximations (SCFT/CL) to a field theory to a field theory 10 1 Γ - 1 0.1 0.01 0.01 0.1 1 10 kR g / 2 1 / 2 13
Deriving free energy functionals Exact DFT � � � F [ φ ] = − k B T ln Dw Dφ exp( − βH [ φ, w ]) − J ( r ) φ ( r ) + Mean-Field Approximation & Weak-Inhomogeneity* ↓ Random Phase Approximation (RPA) F [ φ ] = F 0 [ φ ] + 1 � � d r ′ Γ( r − r ′ ) δφ ( r ) δφ ( r ′ ) + O ( δφ 3 ) d r 2 * Other approximations are possible, e.g. slow gradient expansion G.H. Fredrickson. The Equilibrium Theory of Inhomogeneous Polymers. Oxford (2006). 14
Square-gradient (Cahn–Hilliard) models For a simple mixture the RPA (or gradient expansion) simplifies to: � � � f 0 ( φ ) + 1 2 κ ( φ ) |∇ φ | 2 F [ φ ] = d r Flory–Huggins–de Gennes Ginzburg–Landau f 0 ( φ ) = a ( φ ) 2 + bφ 4 2 φ i � f 0 ( φ ) = ln φ i + χ 12 φ 1 φ 2 N i κ ( φ ) = κ i =1 � 1 � κ ( φ ) = b 2 − χ 18 φ 1 φ 2 P.G. de Gennes. J. Chem. Phys. (1980). Cahn and Hilliard. J. Chem. Phys. (1958). 15
Stability is a challenge at strong segregation solvent An unstable code is bad H ◮ The parameter space is very limited G L-L ◮ The quench depth can L-G vary with time polymer non-solvent Why is it hard? Accuracy Small w and small ∆ φ means we need a fine grid (small ∆ x ) and accurate time integration (small ∆ t ). 16
Interaction between small w and small ∆ φ binary polymer solution N = 30 , χ = 0 . 979 The key challenge Resolve the curvature of the asymmetric interfacial profile within the order of accuracy of ∆ φ . 17
Regularizing the free energy Modified Flory–Huggins f ( φ ) = φ N ln φ + (1 − φ ) ln(1 − φ ) + χφ (1 − φ ) + A exp( − φ/δ ) 0.12 0.5 0.10 0.4 0.08 0.3 0.06 0.2 0.04 0.1 0.02 0.2 0.4 0.6 0.8 1.0 - 0.01 0.01 0.02 0.03 0.04 0.05 N = 40 , χ = 3 . 5 A = 10 − 2 , δ = 5 × 10 − 3 18
Effect of regularization on the phase diagram No regularization Regularized ( A = δ = 5 e − 3 ) 19
Effect of regularization on the dynamics No regularization Regularized ( A = δ = 5 e − 3 ) 20
What about inhomogeneous polymer models? Limitations of the RPA 10 ◮ Γ( k ) is a complex 1 function Γ - 1 ◮ Limited to O ( δφ 2 ) , i.e. 0.1 “weak segregation” Leibler. J. Chem. Phys. (1980) 0.01 0.01 0.1 1 10 kR g / 2 1 / 2 Ohta-Kawasaki procedure 10 ◮ Get non-local terms from the small k and large k 1 limits of the RPA Γ - 1 ◮ Local approximation 0.1 beyond O ( δφ 2 ) 0.01 0.01 0.1 1 10 Ohta & Kawasaki. Macromol. (1986) kR g / 2 1 / 2 21
Ohta-Kawasaki proof of principle � � κ i � 2 |∇ φ i | 2 F [ φ ] = d r f ( { φ i } ) + i � +1 � � d r ′ G ( r , r ′ ) δφ i ( r ) δφ i ( r ′ ) � ξ i d r 2 i “OK Model” – Lam “OK Model” – Hex 22
How can we model the free energy? Field theory Analytical Numerical simulations approximations approximations (SCFT/CL) to a field theory to a field theory 10 1 Γ - 1 0.1 0.01 0.01 0.1 1 10 kR g / 2 1 / 2 23
Recommend
More recommend