Dynamics for Mechatronics Engineers, Concepts and Examples DR. OSAMA M. AL-HABAHBEH MECHATRONICS ENGINEERING DEPARTMENT THE UNIVERSITY OF JORDAN 2017
Chapter 1: introduction Dynamic is concerned with bodies having acceleration motion. It is divided into two parts: KINEMATICS, which deals only with the geometry of motion, and KINETICS, which deals with the forces that cause the motion.
Chapter 2: Kinematics of Particles A particle has a mass but negligible size and shape this type of approach is used when the dimensions of the object are negligible. Examples of particles are rockets and chicles provided that only motion of mass center is considered and any rotation is neglected.
Rectilinear Motion particle moves along a straight-line path. The kinematics of the particle involves the position, velocity, and the acceleration.
P . s o s Position A single coordinate axis s describes the straight line path of the particle. The origin o is a fixed point. The position is a vector. The magnitude of the vector is the distance between zero and P. the direction of the vector is determined using the sign of s, (+ or -)
Dispala spalacement cement The displace,ent is the change of the particle's position ,when the particle moves from " p " to " p' ". The displacememnt βπ = π β² β π When moving to the right . βπ πππ π ππππππππ ππππ But while moving to the left . βπ πππ π ππππππππ ππππ βπ ππ ππππ π πππ πππ . βπ π ππππ ππ πππππππππ ππππ πππ πππππππ π π ππππππ , ππππ π ππ ππππππ Positive.
Velocity Vavg= βπ‘\βπ’ βπ‘: πππ‘πππππππππ’ βπ’: π’πππ πππ’ππ π€ππ Vins= lim βπ’β0 βπ‘\βπ’ =ds\dt βπ’: πππ₯ππ§π‘ πππ‘ππ’ππ€π The sign of (V)carresponds to the sign of ds(to the right is always +ve,to the left always -ve) V:Is the vector with it's magnitude called speed.
Acceleration Acc(avg)= βπ€\βπ’ βπ€: π€ππππππ’π§ ππππππ ππππ π€ β² β π€ βπ’: π’πππ πππ’ππ π€π
Acceleration ο΄ Instantaneous Acceleration: βπ€ ππ€ lim = = ππ’ = πππππππ ππ’πππ ππ’ π’πππ π’. βπ’ βπ’ββ π 2 π‘ ππ‘ π ππ‘ ο΄ π€ = ππ’ β π = ππ’ = π 2 π’ ππ’ ο΄ If: π = 0 β π·πππ‘π’πππ’ π€ππππππ’π§ ο΄ ο΄ π > 0 β π΅ππππππ ππ’πππ ο΄ π < 0 β πΈππππππ ππ’πππ
Constant Acceleration ο΄ Constant Acceleration: Velocity as function of time, π€ π’ can be obtained by integration: ππ€ ππ€ π = ππ’ β π π = ππ’ , ππ‘π‘π£ππ π€ = π€ π ππ’ π’ = 0 π€ π’ π€ = π π π’ ] 0 π’ β ππ€ = π π ππ’ β ππ€ = π π ππ’ β π€] π€ π π€ π 0 β π€ β π€ π = π π π’ β 0 β π€ β π€ π = π π π’ β π = π π + π π π Position as function of time, π‘ π’ can be obtained by integration: ππ‘ π€ = ππ’ = π€ π + π π π’, ππ‘π‘π£ππ π‘ = π‘ π ππ’ π’ = 0 π’ 2 π’ β π‘ = π€ π + π π π’ ππ’ β π‘ β π‘ π = π€ π π’ β 0 + π π ( 2 β 0) 0 1 2 π π π’ 2 β π‘ = π‘ π + π€ π π’ +
Constant Acceleration ο΄ Constant Acceleration: ο΄ Velocity as function of position, π€ π‘ : πππ‘ = π€ππ€ , ππ‘π‘π£ππ π€ π’ = 0 = π€ π π‘ π’ = π = π‘_π π€ π‘ 2 π€ 2 β π€ π 2 = π π π‘ β π‘ π 1 β π€ππ€ = π π ππ‘ β π€ π π‘ π 2 = 2π π π‘ β π‘ π β π€ 2 = π€ π π π π’ β π = π π π + ππ π (π β π π ) β π€ 2 β π€ π ο΄ Acceleration as function of time, π = π π’ can be obtained by: ππ€ π€ π’ π’ π = ππ’ = π€ = π π’ β ππ€ = π π’ ππ’ β π€ = π€ π + π π’ ππ’ π€ π 0 0 To obtain Position: π‘ π’ π’ ππ‘ v = ππ’ = π‘ β ππ‘ = π€ ππ’ β π‘ = π‘ π + π€ππ’ π‘ π 0 0
Acceleration Acceleration as function of velocity, a = π π€ : ο΄ ππ€ π€ ππ€ π’ π€ ππ€ π = ππ’ = π€ = π π€ β π π€ = ππ’ β π’ = π π€ β π€ π’ β π‘(π’) π€ π 0 π€ π Acceleration as function of displacement, a = π π‘ : ο΄ π€ππ€ = πππ‘ = π π‘ ππ‘ β π€ππ€ = π π‘ ππ‘ β π€ 2 = π€ π π€ π‘ 2 + 2 π π‘ ππ‘ π‘ π€ π π‘ π π‘ π π‘ π’ π‘ ππ ππ‘ ππ‘ ο΄ π = ππ = π(π‘) β π π‘ = ππ’ β π’ = π(π‘) β π’ π‘ β π‘(π’) π‘ π 0 π‘ π
Plane Curvilinear Motion ο΄ Describes the motion of a particle along a curved path that lies in a single plane. ο΄ Where: βπ = ππππ’ππ πΈππ‘πππππππππ’ βπ‘ = ππππππ πΈππ‘πππππππππ’ βπ π€ ππ€π = βπ’ βπ ππ π€ πππ‘ = lim βπ’ = ππ’ = π βπ’ β0 ππ‘ Speed = π€ = ππ’ = π‘ βπ€ π ππ€π = βπ’ βπ€ ππ€ π πππ‘ = lim βπ’ = ππ’ = π€ βπ’ β0
Rectangular coordination π = ππ + ππ π = π = ππ + ππ π = π = π = ππ + ππ From the figure:- π π = ππ π + ππ π ππ π + ππ π π = ππ tan πΎ = ππ π π = ππ π + ππ π ππ π + ππ π π = If x= π π π & π = π π π
Projectile motion Rectangular coordination are used for the trajectory analysis of a projectile motion.
π π = (π π ) π π π = π π π = βπ Integration π π = (π π ) π β ππ Integration X= π π + (π π ) π t ππ π = (π π ) π βππ(π β π π ) π π ππ π Y= π π + (π π ) π +
t: tangent , n: normal
Normal and tangential coordinates d s = Ο df ππ‘ ππ V= ππ’ = Ο ππ’ π =V π t π = Ο Ξ² π t t ) ππ€ π(π€π π = ππ’ = = v ( e t )`+(v)` e t ππ’
β’ Direction of de t is given by e n : π e t β’ de t =e n d Ξ² β πΞ² =e n πππ’ πΞ² ππ’ )e n β (π t)` = Ξ² e n β’ ππ’ =( β’ V= Ο Ξ² β π =v ( e t )`+(v)` e t β’ v ( e t )`=v ( Ξ² e n) π€ β’ Ξ² = Ο π€ 2 π€ Ο π n )= β’ V( Ο e n π€ 2 β’ π = Ο e n + π€ π t
Page 9 : 2 ο¦ οΆ 2 v v ο¦ ο¦ ο§ ο· ο½ ο½ ο½ ο’ ο½ ο’ 2 a p p v ο§ ο· n ο¨ οΈ p p ο½ ο½ ο¦ ο¦ ο¦ a v s t ο½ ο« 2 2 a an at
Circular motion ο¦ ο± v = v 2 2 v . ο¦ ο½ ο½ ο½ ο± a r ο± v n r ο¦ ο¦ ο½ ο½ ο± ο¦ a v r t
Ex : problem 2/3 page 27 3 ο½ ο ο« 2 Velocity of a particle is given by : v 2 4 t 5 t Evaluate : position οΌ ( ) ? s ο― ο½ v ? ο― οΎ a ? at ο½ t 3 s when ο½ ο ο½ 0 ο½ t 0 s s 3 m
5 ο½ ο² 2 2 4 t 16 t 3 ο² ο½ ο ο« ο½ ο ο« ο« 2 s 2 vdt ( 2 4 t 5 t ) dt 2 t c 2 8 5 ο½ ο ο« ο« ο 2 2 s ( t ) 2 t 2 t 2 t c ο½ ο½ ο½ s ( 0 ) c s 3 m 0 5 ο½ ο ο« ο« 2 2 s ( 3 ) 2 ( 3 ) 2 ( 3 ) 2 ( 3 ) 3 ο½ ο ο« ο« ο½ 6 18 31 . 2 3 22 . 2 m
3 ο½ ο ο« ο½ ( 3 ) 2 4 ( 3 ) 5 ( 3 ) 2 15 . 98 / v m s dv 3 15 1 1 ο½ ο½ ο ο« ο½ ο ο 2 2 a 4 ( 5 )( ) t ( t ) 4 2 2 dt 15 1 ο½ ο ο½ 2 a ( 3 ) ( 3 ) 4 8 . 99 m / s 2
Example 2-15. Page 29# A particle is fired vertically with π π = ππ m/s. What is the max altitude h reached by the projectile and ο΄ the time after firing for it to return to ground. Neglect air drag and take g as constant at 9.81 m/ π π . Sol: π π ππ π π = π π + π π π + π ππ π = π + πππ β π + π π π π. ππ π π π = π π + π π π + ππ πππ, π = π , π = π π + ππ = π = πππ + π. ππ π π = ππ. ππ π π π. ππ β ππ. ππ π = ππππ π π π = πππ β ππ. ππ β π πππππ = ππ = ππ. π π
Recommend
More recommend