dynamics for mechatronics engineers
play

Dynamics for Mechatronics Engineers, Concepts and Examples DR. OSAMA - PowerPoint PPT Presentation

Dynamics for Mechatronics Engineers, Concepts and Examples DR. OSAMA M. AL-HABAHBEH MECHATRONICS ENGINEERING DEPARTMENT THE UNIVERSITY OF JORDAN 2017 Chapter 1: introduction Dynamic is concerned with bodies having acceleration motion. It is


  1. Dynamics for Mechatronics Engineers, Concepts and Examples DR. OSAMA M. AL-HABAHBEH MECHATRONICS ENGINEERING DEPARTMENT THE UNIVERSITY OF JORDAN 2017

  2. Chapter 1: introduction Dynamic is concerned with bodies having acceleration motion. It is divided into two parts: KINEMATICS, which deals only with the geometry of motion, and KINETICS, which deals with the forces that cause the motion.

  3. Chapter 2: Kinematics of Particles A particle has a mass but negligible size and shape this type of approach is used when the dimensions of the object are negligible. Examples of particles are rockets and chicles provided that only motion of mass center is considered and any rotation is neglected.

  4. Rectilinear Motion particle moves along a straight-line path. The kinematics of the particle involves the position, velocity, and the acceleration.

  5. P . s o s Position A single coordinate axis s describes the straight line path of the particle. The origin o is a fixed point. The position is a vector. The magnitude of the vector is the distance between zero and P. the direction of the vector is determined using the sign of s, (+ or -)

  6. Dispala spalacement cement The displace,ent is the change of the particle's position ,when the particle moves from " p " to " p' ". The displacememnt βˆ†π’• = 𝒕 β€² βˆ’ 𝒕 When moving to the right . βˆ†π’• π’Šπ’ƒπ’• 𝒃 π’’π’‘π’•π’‹π’–π’‹π’˜π’‡ 𝒕𝒋𝒉𝒐 But while moving to the left . βˆ†π’• π’Šπ’ƒπ’• 𝒃 π’π’‡π’‰π’ƒπ’–π’‹π’˜π’‡ 𝒕𝒋𝒉𝒐 βˆ†π’• 𝒋𝒕 π’ƒπ’Žπ’•π’‘ 𝒃 π’˜π’‡π’…π’–π’‘π’” . βˆ†π’• π’…π’‘π’—π’Žπ’† 𝒄𝒇 π’†π’‹π’ˆπ’ˆπ’‡π’”π’‡π’π’– π’ˆπ’”π’‘π’ π’–π’Šπ’‡ 𝒆𝒋𝒕𝒖𝒃𝒐𝒅𝒇 π’…π’‘π’˜π’‡π’”π’‡π’† , π’™π’Šπ’‹π’…π’Š 𝒋𝒕 π’ƒπ’Žπ’™π’ƒπ’›π’• Positive.

  7. Velocity Vavg= βˆ†π‘‘\βˆ†π‘’ βˆ†π‘‘: π‘’π‘—π‘‘π‘žπ‘šπ‘π‘‘π‘“π‘›π‘“π‘œπ‘’ βˆ†π‘’: 𝑒𝑗𝑛𝑓 π‘—π‘œπ‘’π‘“π‘ π‘€π‘π‘š Vins= lim βˆ†π‘’β†’0 βˆ†π‘‘\βˆ†π‘’ =ds\dt βˆ†π‘’: π‘π‘šπ‘₯𝑏𝑧𝑑 π‘žπ‘π‘‘π‘—π‘’π‘—π‘€π‘“ The sign of (V)carresponds to the sign of ds(to the right is always +ve,to the left always -ve) V:Is the vector with it's magnitude called speed.

  8. Acceleration Acc(avg)= βˆ†π‘€\βˆ†π‘’ βˆ†π‘€: π‘€π‘“π‘šπ‘π‘‘π‘—π‘’π‘§ π‘’π‘—π‘”π‘”π‘“π‘ π‘“π‘œπ‘‘π‘“ 𝑀 β€² βˆ’ 𝑀 βˆ†π‘’: 𝑒𝑗𝑛𝑓 π‘—π‘œπ‘’π‘“π‘ π‘€π‘

  9. Acceleration ο‚΄ Instantaneous Acceleration: βˆ†π‘€ 𝑒𝑀 lim = = 𝑒𝑒 = π‘π‘‘π‘‘π‘“π‘šπ‘“π‘ π‘π‘’π‘—π‘π‘œ 𝑏𝑒 𝑒𝑗𝑛𝑓 𝑒. βˆ†π‘’ βˆ†π‘’β†’βˆž 𝑒 2 𝑑 𝑒𝑑 𝑒 𝑒𝑑 ο‚΄ 𝑀 = 𝑒𝑒 β†’ 𝑏 = 𝑒𝑒 = 𝑒 2 𝑒 𝑒𝑒 ο‚΄ If: 𝑏 = 0 β†’ π·π‘π‘œπ‘‘π‘’π‘π‘œπ‘’ π‘€π‘“π‘šπ‘π‘‘π‘—π‘’π‘§ ο‚΄ ο‚΄ 𝑏 > 0 β†’ π΅π‘‘π‘‘π‘“π‘šπ‘“π‘ π‘π‘’π‘—π‘π‘œ ο‚΄ 𝑏 < 0 β†’ πΈπ‘“π‘‘π‘“π‘šπ‘“π‘ π‘π‘’π‘—π‘π‘œ

  10. Constant Acceleration ο‚΄ Constant Acceleration: Velocity as function of time, 𝑀 𝑒 can be obtained by integration: 𝑒𝑀 𝑒𝑀 𝑏 = 𝑒𝑒 β†’ 𝑏 𝑑 = 𝑒𝑒 , 𝑏𝑑𝑑𝑣𝑛𝑓 𝑀 = 𝑀 𝑝 𝑏𝑒 𝑒 = 0 𝑀 𝑒 𝑀 = 𝑏 𝑑 𝑒 ] 0 𝑒 β†’ 𝑒𝑀 = 𝑏 𝑑 𝑒𝑒 β†’ 𝑒𝑀 = 𝑏 𝑑 𝑒𝑒 β†’ 𝑀] 𝑀 𝑝 𝑀 𝑝 0 β†’ 𝑀 βˆ’ 𝑀 𝑝 = 𝑏 𝑑 𝑒 βˆ’ 0 β†’ 𝑀 βˆ’ 𝑀 𝑝 = 𝑏 𝑑 𝑒 β†’ π’˜ = π’˜ 𝒑 + 𝒃 𝒅 𝒖 Position as function of time, 𝑑 𝑒 can be obtained by integration: 𝑒𝑑 𝑀 = 𝑒𝑒 = 𝑀 𝑝 + 𝑏 𝑑 𝑒, 𝑏𝑑𝑑𝑣𝑛𝑓 𝑑 = 𝑑 𝑝 𝑏𝑒 𝑒 = 0 𝑒 2 𝑒 β†’ 𝑑 = 𝑀 𝑝 + 𝑏 𝑑 𝑒 𝑒𝑒 β†’ 𝑑 βˆ’ 𝑑 𝑝 = 𝑀 𝑝 𝑒 βˆ’ 0 + 𝑏 𝑑 ( 2 βˆ’ 0) 0 1 2 𝑏 𝑑 𝑒 2 β†’ 𝑑 = 𝑑 𝑝 + 𝑀 𝑝 𝑒 +

  11. Constant Acceleration ο‚΄ Constant Acceleration: ο‚΄ Velocity as function of position, 𝑀 𝑑 : 𝑏𝑒𝑑 = 𝑀𝑒𝑀 , 𝑏𝑑𝑑𝑣𝑛𝑓 𝑀 𝑒 = 0 = 𝑀 𝑝 𝑑 𝑒 = 𝑝 = 𝑑_𝑝 𝑀 𝑑 2 𝑀 2 βˆ’ 𝑀 𝑝 2 = 𝑏 𝑑 𝑑 βˆ’ 𝑑 𝑝 1 β†’ 𝑀𝑒𝑀 = 𝑏 𝑑 𝑒𝑑 β†’ 𝑀 𝑝 𝑑 𝑝 2 = 2𝑏 𝑑 𝑑 βˆ’ 𝑑 𝑝 β†’ 𝑀 2 = 𝑀 𝑝 𝑏 𝑑 𝑒 β†’ π’˜ = π’˜ 𝒑 πŸ‘ + πŸ‘π’ƒ 𝒅 (𝒕 βˆ’ 𝒕 𝒑 ) β†’ 𝑀 2 βˆ’ 𝑀 𝑝 ο‚΄ Acceleration as function of time, 𝑏 = 𝑔 𝑒 can be obtained by: 𝑒𝑀 𝑀 𝑒 𝑒 𝑏 = 𝑒𝑒 = 𝑀 = 𝑔 𝑒 β†’ 𝑒𝑀 = 𝑔 𝑒 𝑒𝑒 β†’ 𝑀 = 𝑀 𝑝 + 𝑔 𝑒 𝑒𝑒 𝑀 𝑝 0 0 To obtain Position: 𝑑 𝑒 𝑒 𝑒𝑑 v = 𝑒𝑒 = 𝑑 β†’ 𝑒𝑑 = 𝑀 𝑒𝑒 β†’ 𝑑 = 𝑑 𝑝 + 𝑀𝑒𝑒 𝑑 𝑝 0 0

  12. Acceleration Acceleration as function of velocity, a = 𝑔 𝑀 : ο‚΄ 𝑒𝑀 𝑀 𝑒𝑀 𝑒 𝑀 𝑒𝑀 𝑏 = 𝑒𝑒 = 𝑀 = 𝑔 𝑀 β†’ 𝑔 𝑀 = 𝑒𝑒 β†’ 𝑒 = 𝑔 𝑀 β†’ 𝑀 𝑒 β†’ 𝑑(𝑒) 𝑀 𝑝 0 𝑀 𝑝 Acceleration as function of displacement, a = 𝑔 𝑑 : ο‚΄ 𝑀𝑒𝑀 = 𝑏𝑒𝑑 = 𝑔 𝑑 𝑒𝑑 β†’ 𝑀𝑒𝑀 = 𝑔 𝑑 𝑒𝑑 β†’ 𝑀 2 = 𝑀 𝑝 𝑀 𝑑 2 + 2 𝑔 𝑑 𝑒𝑑 𝑑 𝑀 𝑝 𝑑 𝑝 𝑑 𝑝 𝑑 𝑒 𝑑 𝒆𝒕 𝑒𝑑 𝑒𝑑 ο‚΄ π’˜ = 𝒆𝒖 = 𝑕(𝑑) β†’ 𝑕 𝑑 = 𝑒𝑒 β†’ 𝑒 = 𝑔(𝑑) β†’ 𝑒 𝑑 β†’ 𝑑(𝑒) 𝑑 𝑝 0 𝑑 𝑝

  13. Plane Curvilinear Motion ο‚΄ Describes the motion of a particle along a curved path that lies in a single plane. ο‚΄ Where: βˆ†π‘  = π‘Šπ‘“π‘‘π‘’π‘π‘  πΈπ‘—π‘‘π‘žπ‘šπ‘π‘‘π‘“π‘›π‘“π‘œπ‘’ βˆ†π‘‘ = π‘‡π‘‘π‘π‘šπ‘π‘  πΈπ‘—π‘‘π‘žπ‘šπ‘π‘‘π‘“π‘›π‘“π‘œπ‘’ βˆ†π‘  𝑀 𝑏𝑀𝑕 = βˆ†π‘’ βˆ†π‘  𝑒𝑠 𝑀 π‘—π‘œπ‘‘ = lim βˆ†π‘’ = 𝑒𝑒 = 𝑠 βˆ†π‘’ β†’0 𝑒𝑑 Speed = 𝑀 = 𝑒𝑒 = 𝑑 βˆ†π‘€ 𝑏 𝑏𝑀𝑕 = βˆ†π‘’ βˆ†π‘€ 𝑒𝑀 𝑏 π‘—π‘œπ‘‘ = lim βˆ†π‘’ = 𝑒𝑒 = 𝑀 βˆ†π‘’ β†’0

  14. Rectangular coordination 𝒔 = π’šπ’‹ + π’›π’Œ π’˜ = 𝒔 = π’šπ’‹ + π’›π’Œ 𝒃 = π’˜ = 𝒔 = π’šπ’‹ + π’›π’Œ From the figure:- π’˜ πŸ‘ = π’˜π’š πŸ‘ + π’˜π’› πŸ‘ π’˜π’š πŸ‘ + π’˜π’› πŸ‘ π’˜ = π’˜π’› tan 𝜾 = π’˜π’š 𝒃 πŸ‘ = π’ƒπ’š πŸ‘ + 𝒃𝒛 πŸ‘ π’ƒπ’š πŸ‘ + 𝒃𝒛 πŸ‘ 𝒃 = If x= π’ˆ 𝟐 𝒖 & 𝒛 = π’ˆ πŸ‘ 𝒖

  15. Projectile motion Rectangular coordination are used for the trajectory analysis of a projectile motion.

  16. π’˜ π’š = (π’˜ π’š ) 𝟏 𝒃 π’š = 𝟏 𝒃 𝒛 = βˆ’π’‰ Integration π’˜ 𝒛 = (π’˜ 𝒛 ) 𝟏 – 𝒉𝒖 Integration X= π’š 𝟏 + (π’˜ π’š ) 𝟏 t π’˜π’› πŸ‘ = (π’˜ 𝒛 ) 𝟏 βˆ’πŸ‘π’‰(𝒛 βˆ’ 𝒛 𝟏 ) 𝟐 πŸ‘ 𝒉𝒖 πŸ‘ Y= 𝒛 𝟏 + (π’˜ 𝒛 ) 𝟏 +

  17. t: tangent , n: normal

  18. Normal and tangential coordinates d s = ρ df 𝑒𝑑 𝑒𝑔 V= 𝑒𝑒 = ρ 𝑒𝑒 π‘Š =V 𝑓 t π‘Š = ρ Ξ² 𝑓 t t ) 𝑒𝑀 𝑒(𝑀𝑓 𝑏 = 𝑒𝑒 = = v ( e t )`+(v)` e t 𝑒𝑒

  19. β€’ Direction of de t is given by e n : 𝑒 e t β€’ de t =e n d Ξ² β†’ 𝑒β =e n 𝑒𝑓𝑒 𝑒β 𝑒𝑒 )e n β†’ (𝑓 t)` = Ξ² e n β€’ 𝑒𝑒 =( β€’ V= ρ Ξ² β†’ 𝑏 =v ( e t )`+(v)` e t β€’ v ( e t )`=v ( Ξ² e n) 𝑀 β€’ Ξ² = ρ 𝑀 2 𝑀 ρ 𝑓 n )= β€’ V( ρ e n 𝑀 2 β€’ 𝑏 = ρ e n + 𝑀 𝑓 t

  20. Page 9 : 2  οƒΆ 2 v v    οƒ· ο€½ ο€½ ο€½  ο€½  2 a p p v  οƒ· n  οƒΈ p p ο€½ ο€½    a v s t ο€½  2 2 a an at

  21. Circular motion   v = v 2 2 v .  ο€½ ο€½ ο€½  a r  v n r   ο€½ ο€½   a v r t

  22. Ex : problem 2/3 page 27 3 ο€½ ο€­  2 Velocity of a particle is given by : v 2 4 t 5 t Evaluate : position οƒΌ ( ) ? s οƒ―  v ? οƒ― οƒΎ a ? at ο€½ t 3 s when ο€½ οƒž ο€½ 0 ο€½ t 0 s s 3 m

  23. 5 ο€½  2 2 4 t 16 t 3  ο€½ ο€­  ο€½ ο€­   2 s 2 vdt ( 2 4 t 5 t ) dt 2 t c 2 8 5 ο€½ ο€­   οƒž 2 2 s ( t ) 2 t 2 t 2 t c ο€½ ο€½ ο€½ s ( 0 ) c s 3 m 0 5 ο€½ ο€­   2 2 s ( 3 ) 2 ( 3 ) 2 ( 3 ) 2 ( 3 ) 3 ο€½ ο€­   ο€½ 6 18 31 . 2 3 22 . 2 m

  24. 3 ο€½ ο€­  ο€½ ( 3 ) 2 4 ( 3 ) 5 ( 3 ) 2 15 . 98 / v m s dv 3 15 1 1 ο€½ ο€½ ο€­  ο€½ ο€­ οƒž 2 2 a 4 ( 5 )( ) t ( t ) 4 2 2 dt 15 1 ο€½ ο€­ ο€½ 2 a ( 3 ) ( 3 ) 4 8 . 99 m / s 2

  25. Example 2-15. Page 29# A particle is fired vertically with π’˜ 𝒑 = πŸ‘πŸ m/s. What is the max altitude h reached by the projectile and ο‚΄ the time after firing for it to return to ground. Neglect air drag and take g as constant at 9.81 m/ 𝒕 πŸ‘ . Sol: 𝟐 πŸ‘ 𝒃𝒖 πŸ‘ 𝒕 = 𝒕 𝒑 + π’˜ 𝒑 𝒖 + πŸ‘ 𝒉𝒖 πŸ‘ = 𝟏 + πŸ‘πŸπŸ βˆ— 𝒛 + 𝟐 𝟐 πŸ‘ 𝟘. πŸ—πŸ 𝒖 πŸ‘ π’Š = π’Š 𝒑 + π’˜ 𝒑 𝒖 + 𝒃𝒖 𝒖𝒑𝒒, π’˜ = 𝟏 , π’˜ = π’˜ 𝒑 + 𝒃𝒖 = 𝟏 = πŸ‘πŸπŸ + 𝟘. πŸ—πŸ 𝒖 𝒖 = πŸ‘πŸ. πŸ’πŸ— 𝒕 πŸ‘ 𝟘. πŸ—πŸ βˆ— πŸ‘πŸ. πŸ’πŸ— πŸ‘ = πŸ‘πŸπŸ’πŸ˜ 𝒏 𝟐 π’Š = πŸ‘πŸπŸ βˆ— πŸ‘πŸ. πŸ’πŸ— βˆ’ 𝒖 π’–π’‘π’–π’ƒπ’Ž = πŸ‘π’– = πŸ“πŸ. πŸ— 𝒕

Recommend


More recommend