dynamic proof theories for normative reasoning on the
play

Dynamic Proof Theories For Normative Reasoning on the Basis of - PowerPoint PPT Presentation

Dynamic Proof Theories For Normative Reasoning on the Basis of Consistency Considerations Christian Straer and Joke Meheus and Mathieu Beirlaen and Frederik Van De Putte Centre for Logic and Philosophy of Science Ghent University, Belgium {


  1. Adaptive Proofs A line: formula condition l A ∧ B l’,. . . ,l”; R ∆ line- justification number Conditional rule: ∆ 1 A 1 . . . . . . If A 1 , . . . , A n ⊢ LLL B ∨ Dab (∆): A n ∆ n B ∆ 1 ∪ . . . ∪ ∆ n ∪ ∆ 9/29

  2. Adaptive Proofs A line: formula condition l A ∧ B l’,. . . ,l”; R ∆ line- justification number Conditional rule: ∆ 1 A 1 . . . . . . If A 1 , . . . , A n ⊢ LLL B ∨ Dab (∆): A n ∆ n B ∆ 1 ∪ . . . ∪ ∆ n ∪ ∆ collect abnormalities 9/29

  3. Adaptive Proofs A line: formula condition A ∧ B l l’,. . . ,l”; R ∆ line- justification number Conditional rule: A 1 ∆ 1 . . . . . . If A 1 , . . . , A n ⊢ LLL B ∨ Dab (∆) : A n ∆ n ∆ 1 ∪ . . . ∪ ∆ n ∪ ∆ B add new condition collect abnormalities 9/29

  4. 1 • O a PREM ∅ • O a ′ 2 PREM ∅ 3 • O c PREM ∅ � ¬ ( a ∧ a ′ ) 4 PREM ∅ premise introduction 10/29

  5. 1 • O a PREM ∅ • O a ′ 2 PREM ∅ 3 • O c PREM ∅ � ¬ ( a ∧ a ′ ) 4 PREM ∅ {• O a ∧ ¬ O a } 5 O a 1; RC Note: • O a ⊢ LLL O a ∨ ( • O a ∧ ¬ O a ) 10/29

  6. 1 • O a PREM ∅ • O a ′ 2 PREM ∅ 3 • O c PREM ∅ � ¬ ( a ∧ a ′ ) 4 PREM ∅ {• O a ∧ ¬ O a } 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } unconditional rule Recall: O is KD -modality A 1 ∆ 1 . . . . . . If A 1 , . . . , A n ⊢ LLL B then ∆ n A n ∆ 1 ∪ . . . ∪ ∆ n B 10/29

  7. 1 • O a PREM ∅ • O a ′ 2 PREM ∅ 3 • O c PREM ∅ � ¬ ( a ∧ a ′ ) 4 PREM ∅ {• O a ∧ ¬ O a } 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU analogous to lines 5 and 6 10/29

  8. 1 • O a PREM ∅ • O a ′ 2 PREM ∅ 3 • O c PREM ∅ � ¬ ( a ∧ a ′ ) 4 PREM ∅ {• O a ∧ ¬ O a } 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU ! a ∨ ! a ′ 9 1,2,4; RU ∅ We shortcut: this follows by O-aggregation and OIC ! A = df • O A ∧ ¬ O A 10/29

  9. 1 • O a PREM ∅ • O a ′ 2 PREM ∅ 3 • O c PREM ∅ � ¬ ( a ∧ a ′ ) 4 PREM ∅ {• O a ∧ ¬ O a } 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU ! a ∨ ! a ′ 9 1,2,4; RU ∅ ◮ One of our assumptions is false! We need a retraction mechanism. 10/29

  10. 1 • O a PREM ∅ • O a ′ 2 PREM ∅ 3 • O c PREM ∅ � ¬ ( a ∧ a ′ ) 4 PREM ∅ {• O a ∧ ¬ O a } 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU ! a ∨ ! a ′ 9 1,2,4; RU ∅ ◮ One of our assumptions is false! We need a retraction mechanism. ◮ marking of lines which are retracted 10/29

  11. 1 • O a PREM ∅ • O a ′ 2 PREM ∅ 3 • O c PREM ∅ � ¬ ( a ∧ a ′ ) 4 PREM ∅ {• O a ∧ ¬ O a } 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU ! a ∨ ! a ′ 9 1,2,4; RU ∅ ◮ One of our assumptions is false! We need a retraction mechanism. ◮ marking of lines which are retracted ◮ determined by the minimal disjunctions of abnormalities which are derived on the empty condition 10/29

  12. 1 • O a PREM ∅ • O a ′ 2 PREM ∅ 3 • O c PREM ∅ � ¬ ( a ∧ a ′ ) 4 PREM ∅ {• O a ∧ ¬ O a } 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU ! a ∨ ! a ′ 9 1,2,4; RU ∅ ◮ One of our assumptions is false! We need a retraction mechanism. ◮ marking of lines which are retracted ◮ determined by the minimal disjunctions of abnormalities which are derived on the empty condition ◮ exact definition depends on the strategy 10/29

  13. Reliability and Minimal Abnormality . . . . . . . . . . . . {• O a ∧ ¬ O a } 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU ! a ∨ ! a ′ ∅ 9 1,2,4; RU ◮ Reliability assumption contains a member of a minimal disjunction of abnormalities ⇒ retract 11/29

  14. Reliability and Minimal Abnormality . . . . . . . . . . . . {• O a ∧ ¬ O a } � 5 O a 1; RC O( a ∨ a ′ ) � 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ � 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) � 8 7; RU ! a ∨ ! a ′ ∅ 9 1,2,4; RU ◮ Reliability assumption contains a member of a minimal disjunction of abnormalities ⇒ retract 11/29

  15. Reliability and Minimal Abnormality . . . . . . . . . . . . {• O a ∧ ¬ O a } 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU ! a ∨ ! a ′ ∅ 9 1,2,4; RU ◮ Reliability assumption contains a member of a minimal disjunction of abnormalities ⇒ retract ◮ application context: where conflict is likely to be a sign of erroneous issuing of norms by the authority ◮ e.g., authority may have made a mistake in issuing O a ′ (that explains the conflict) ◮ there may additionally be a high cost for realizing an erroneous norm (e.g., a big financial investment) 11/29

  16. Reliability and Minimal Abnormality . . . . . . . . . . . . {• O a ∧ ¬ O a } � 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ � 7 2; RC { ! a } , { ! a ′ } � � {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU ! a ∨ ! a ′ ∅ 9 1,2,4; RU ◮ Reliability assumption contains a member of a minimal disjunction of abnormalities ⇒ retract ◮ application context: where conflict is likely to be a sign of erroneous issuing of norms by the authority ◮ e.g., authority may have made a mistake in issuing O a ′ (that explains the conflict) ◮ there may additionally be a high cost for realizing an erroneous norm (e.g., a big financial investment) ◮ Minimal Abnormality ◮ minimal choice sets 11/29

  17. Reliability and Minimal Abnormality . . . . . . . . . . . . {• O a ∧ ¬ O a } � 5 O a 1; RC O( a ∨ a ′ ) 6 5; RU {• O a ∧ ¬ O a } {• O a ′ ∧ ¬ O a ′ } O a ′ � 7 2; RC {• O a ′ ∧ ¬ O a ′ } O( a ∨ a ′ ) 8 7; RU ! a ∨ ! a ′ ∅ 9 1,2,4; RU ◮ Reliability assumption contains a member of a minimal disjunction of abnormalities ⇒ retract ◮ application context: where conflict is likely to be a sign of erroneous issuing of norms by the authority ◮ e.g., authority may have made a mistake in issuing O a ′ (that explains the conflict) ◮ there may additionally be a high cost for realizing an erroneous norm (e.g., a big financial investment) ◮ Minimal Abnormality ◮ minimal choice sets ◮ A is derived “safely” if for each minimal choice ϕ , A is derived on a condition ∆ such that ϕ ∩ ∆ = ∅ 11/29

  18. Counting Strategy 1 • O a PREM ∅ 2 • O b PREM ∅ 3 • O c PREM ∅ 4 • O d PREM ∅ 12/29

  19. Counting Strategy 1 • O a PREM ∅ 2 • O b PREM ∅ 3 • O c PREM ∅ 4 • O d PREM ∅ 5 � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) PREM ∅ 12/29

  20. Counting Strategy 1 • O a PREM ∅ 2 • O b PREM ∅ 3 • O c PREM ∅ 4 • O d PREM ∅ 5 � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) PREM ∅ ! a ∨ ! b ∅ 6 1,2,5; RU 7 ! a ∨ ! c 1,3,5; RU ∅ ! a ∨ ! d ∅ 8 1,4,5; RU 12/29

  21. Counting Strategy 1 • O a PREM ∅ 2 • O b PREM ∅ 3 • O c PREM ∅ 4 • O d PREM ∅ 5 � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) PREM ∅ ! a ∨ ! b ∅ 6 1,2,5; RU 7 ! a ∨ ! c 1,3,5; RU ∅ ! a ∨ ! d ∅ 8 1,4,5; RU � 9 O a 1; RC { ! a } 10 O b 2; RC { ! b } 11 O c 3; RC { ! c } 12 O d 4; RC { ! d } 12/29

  22. Counting Strategy 1 • O a PREM ∅ 2 • O b PREM ∅ 3 • O c PREM ∅ 4 • O d PREM ∅ 5 � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) PREM ∅ ! a ∨ ! b ∅ 6 1,2,5; RU 7 ! a ∨ ! c 1,3,5; RU ∅ ! a ∨ ! d ∅ 8 1,4,5; RU � 9 O a 1; RC { ! a } 10 O b 2; RC { ! b } 11 O c 3; RC { ! c } 12 O d 4; RC { ! d } ◮ marking like for Minimal Abnormality: just now consider the quantitatively minimal choice sets ◮ minimal choice sets (w.r.t. ⊂ ): { ! a } and { ! b , ! c , ! d } ◮ minimal choice sets (w.r.t. cardinality): { ! a } 12/29

  23. Duality between Maximal Consistent Subsets and the Minimal Choice Sets • O a , • O b , • O c , • O d , � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) 13/29

  24. Duality between Maximal Consistent Subsets and the Minimal Choice Sets • O a , • O b , • O c , • O d , � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) Maximal consistent subsets: 1. { a } 2. { b , c , d } 13/29

  25. Duality between Maximal Consistent Subsets and the Minimal Choice Sets • O a , • O b , • O c , • O d , � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) Maximal consistent subsets: Maximal choice sets: 1. { a } 1. { ! b , ! c , ! d } 2. { b , c , d } 2. { ! a } 13/29

  26. Duality between Maximal Consistent Subsets and the Minimal Choice Sets • O a , • O b , • O c , • O d , � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) Maximal consistent subsets: Maximal choice sets: 1. { a } 1. { ! b , ! c , ! d } 2. { b , c , d } 2. { ! a } Where O and C are sets of propositional formulas: ◮ Let Γ O , C = {• O A | A ∈ O} ∪ { � A | A ∈ C} . ◮ We say that O ′ ⊆ O is consistent w.r.t. C iff O ′ ∪ C is consistent. ◮ O ′ is ≺ -maximally consistent w.r.t. C iff it is consistent w.r.t. C and there is no O ′′ ≺ O ′ that is consistent w.r.t. C . 13/29

  27. Duality between Maximal Consistent Subsets and the Minimal Choice Sets • O a , • O b , • O c , • O d , � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) Maximal consistent subsets: Maximal choice sets: 1. { a } 1. { ! b , ! c , ! d } 2. { b , c , d } 2. { ! a } Note the following duality: ◮ for each maximal consistent subset O ′ w.r.t. C there is a maximal choice set ϕ of Γ O , C such that O ′ = O \ { A | ! A ∈ ϕ } 13/29

  28. Duality between Maximal Consistent Subsets and the Minimal Choice Sets • O a , • O b , • O c , • O d , � ( a ⊃ ( ¬ b ∧ ¬ c ∧ ¬ d )) Maximal consistent subsets: Maximal choice sets: 1. { a } 1. { ! b , ! c , ! d } 2. { b , c , d } 2. { ! a } Note the following duality: ◮ for each maximal consistent subset O ′ w.r.t. C there is a maximal choice set ϕ of Γ O , C such that O ′ = O \ { A | ! A ∈ ϕ } ◮ and vice versa 13/29

  29. Theorem Γ O , C ⊢ AL m O A iff A is implied by all ⊂ -maximally consistent subsets of O . 14/29

  30. Theorem Γ O , C ⊢ AL m O A iff A is implied by all ⊂ -maximally consistent subsets of O . Theorem Γ O , C ⊢ AL c O A iff A is implied by all ≺ card -maximally consistent subsets of O w.r.t. C . 14/29

  31. Theorem Γ O , C ⊢ AL m O A iff A is implied by all ⊂ -maximally consistent subsets of O . Theorem Γ O , C ⊢ AL c O A iff A is implied by all ≺ card -maximally consistent subsets of O w.r.t. C . Definition A ∈ O is free in O w.r.t. C iff A ∈ O ′ for all ⊂ -maximally consistent subsets O ′ of O w.r.t. C . 14/29

  32. Theorem Γ O , C ⊢ AL m O A iff A is implied by all ⊂ -maximally consistent subsets of O . Theorem Γ O , C ⊢ AL c O A iff A is implied by all ≺ card -maximally consistent subsets of O w.r.t. C . Definition A ∈ O is free in O w.r.t. C iff A ∈ O ′ for all ⊂ -maximally consistent subsets O ′ of O w.r.t. C . E.g., b is free in O = { a , ¬ a , b } w.r.t. C = ∅ . 14/29

  33. Theorem Γ O , C ⊢ AL m O A iff A is implied by all ⊂ -maximally consistent subsets of O . Theorem Γ O , C ⊢ AL c O A iff A is implied by all ≺ card -maximally consistent subsets of O w.r.t. C . Definition A ∈ O is free in O w.r.t. C iff A ∈ O ′ for all ⊂ -maximally consistent subsets O ′ of O w.r.t. C . Theorem Γ O , C ⊢ AL r O A iff A is implied by the set of free members of O w.r.t. C . 14/29

  34. Taking into account implicit obligations 15/29

  35. Taking into account implicit obligations E.g., • O( a ∧ b ) , • O ¬ a � AL O b . ◮ new operator: ◦ characterized by ◮ If A ⊢ CL B then ⊢ • O A ⊃ ◦ O B . 15/29

  36. Taking into account implicit obligations E.g., • O( a ∧ b ) , • O ¬ a � AL O b . ◮ new operator: ◦ characterized by ◮ If A ⊢ CL B then ⊢ • O A ⊃ ◦ O B . • O( a ∧ b ) ∅ 1 PREM 2 • O ¬ a PREM ∅ 15/29

  37. Taking into account implicit obligations E.g., • O( a ∧ b ) , • O ¬ a � AL O b . ◮ new operator: ◦ characterized by ◮ If A ⊢ CL B then ⊢ • O A ⊃ ◦ O B . • O( a ∧ b ) ∅ 1 PREM 2 • O ¬ a PREM ∅ O( a ∧ b ) { ! a } 3 1; RC 15/29

  38. Taking into account implicit obligations E.g., • O( a ∧ b ) , • O ¬ a � AL O b . ◮ new operator: ◦ characterized by ◮ If A ⊢ CL B then ⊢ • O A ⊃ ◦ O B . • O( a ∧ b ) ∅ 1 PREM 2 • O ¬ a PREM ∅ O( a ∧ b ) { ! a } 3 1; RC 4 O b 3; RU { ! a } 15/29

  39. Taking into account implicit obligations E.g., • O( a ∧ b ) , • O ¬ a � AL O b . ◮ new operator: ◦ characterized by ◮ If A ⊢ CL B then ⊢ • O A ⊃ ◦ O B . • O( a ∧ b ) ∅ 1 PREM 2 • O ¬ a PREM ∅ O( a ∧ b ) { ! a } 3 1; RC 4 O b 3; RU { ! a } 5 O ¬ a 2; RC { !( ¬ a ) } 15/29

  40. Taking into account implicit obligations E.g., • O( a ∧ b ) , • O ¬ a � AL O b . ◮ new operator: ◦ characterized by ◮ If A ⊢ CL B then ⊢ • O A ⊃ ◦ O B . • O( a ∧ b ) ∅ 1 PREM 2 • O ¬ a PREM ∅ O( a ∧ b ) { ! a } 3 1; RC 4 O b 3; RU { ! a } 5 O ¬ a 2; RC { !( ¬ a ) } 6 ◦ O b 1; RU ∅ 15/29

  41. Taking into account implicit obligations E.g., • O( a ∧ b ) , • O ¬ a � AL O b . ◮ new operator: ◦ characterized by ◮ If A ⊢ CL B then ⊢ • O A ⊃ ◦ O B . • O( a ∧ b ) ∅ 1 PREM 2 • O ¬ a PREM ∅ O( a ∧ b ) { ! a } 3 1; RC 4 O b 3; RU { ! a } 5 O ¬ a 2; RC { !( ¬ a ) } 6 ◦ O b 1; RU ∅ 7 O b 6; RC {† b } † b = ◦ O b ∧ ¬ O b ? 15/29

  42. Taking into account implicit obligations E.g., • O( a ∧ b ) , • O ¬ a � AL O b . ◮ new operator: ◦ characterized by ◮ If A ⊢ CL B then ⊢ • O A ⊃ ◦ O B . • O( a ∧ b ) ∅ 1 PREM 2 • O ¬ a PREM ∅ O( a ∧ b ) { ! a } 3 1; RC 4 O b 3; RU { ! a } 5 O ¬ a 2; RC { !( ¬ a ) } 6 ◦ O b 1; RU ∅ 7 O b 6; RC {† b } 8 O( a ∨ ¬ b ) 1; RC {† ( a ∨ ¬ b ) } 9 O( ¬ a ∨ ¬ b ) 2; RC {† ( ¬ a ∨ ¬ b ) } O ¬ b {† ( a ∨ ¬ b ) , † ( ¬ a ∨ ¬ b ) 10 8,9; RU 15/29

  43. Taking into account implicit obligations • O( a ∧ b ) ∅ 1 PREM 2 • O ¬ a PREM ∅ O( a ∧ b ) { ! a } 3 1; RC 4 O b 3; RU { ! a } 5 O ¬ a 2; RC { !( ¬ a ) } 6 ◦ O b 1; RU ∅ 7 O b 6; RC {† b } � 8 O( a ∨ ¬ b ) 1; RC {† ( a ∨ ¬ b ) } � 9 O( ¬ a ∨ ¬ b ) 2; RC {† ( ¬ a ∨ ¬ b ) } O ¬ b {† ( a ∨ ¬ b ) , † ( ¬ a ∨ ¬ b ) � 10 8,9; RU 11 † b ∨ † ( a ∨ ¬ b ) ∨ † ( ¬ a ∨ ¬ b ) 1,2; RU ∅ !( a ∧ b ) ∨ ! ¬ a ∅ 12 1,2; RU 13 † a ∨ †¬ a 1,2; RU ∅ 14 † ( a ∨ ¬ b ) ∨ † ( ¬ a ∨ ¬ b ) 13; RU ∅ ◮ † ( � � ◦ O � I A i ∧ ¬ O � � ∨ � � ◦ O � J A j ∧ ¬ O � � I A i ) = I A i J A j ∅� = J ⊂ I ◮ e.g., † ( a ∨¬ b ) = ( ◦ O( a ∨¬ b ) ∧¬ O( a ∨¬ b )) ∨ ( ◦ O a ∧¬ O a ) ∨ ( ◦ O ¬ b ∧¬ O ¬ b ) 15/29

  44. Permissions ◮ add new connective P 16/29

  45. Permissions ◮ add new connective P ◮ besides the former abnormalities add {• P A ∧ ¬ P A } 16/29

  46. Permissions ◮ add new connective P ◮ besides the former abnormalities add {• P A ∧ ¬ P A } ◮ or the more complicated �� ◦ P � I A i ∧ ¬ P � � ∨ � � ◦ P � J A j ∧ ¬ P � �� I A i J A j in ∅� = J ⊂ I combination with If A ⊢ CL B , then • P A ⊢ ◦ P A . 16/29

  47. Permissions ◮ add new connective P ◮ besides the former abnormalities add {• P A ∧ ¬ P A } ◮ or the more complicated �� ◦ P � I A i ∧ ¬ P � � ∨ � � ◦ P � J A j ∧ ¬ P � �� I A i J A j in ∅� = J ⊂ I combination with If A ⊢ CL B , then • P A ⊢ ◦ P A . 16/29

  48. Permissions ◮ add new connective P ◮ besides the former abnormalities add {• P A ∧ ¬ P A } ◮ or the more complicated �� ◦ P � I A i ∧ ¬ P � � ∨ � � ◦ P � J A j ∧ ¬ P � �� I A i J A j in ∅� = J ⊂ I combination with If A ⊢ CL B , then • P A ⊢ ◦ P A . 1 • P( a ∧ b ) PREM ∅ 2 • O ¬ a PREM ∅ 16/29

  49. Permissions ◮ add new connective P ◮ besides the former abnormalities add {• P A ∧ ¬ P A } ◮ or the more complicated �� ◦ P � I A i ∧ ¬ P � � ∨ � � ◦ P � J A j ∧ ¬ P � �� I A i J A j in ∅� = J ⊂ I combination with If A ⊢ CL B , then • P A ⊢ ◦ P A . 1 • P( a ∧ b ) PREM ∅ 2 • O ¬ a PREM ∅ 3 ◦ P a 1; RU ∅ 4 ◦ P b 1; RU ∅ ◦ O ¬ a ∅ 5 2; RU 16/29

  50. Permissions ◮ add new connective P ◮ besides the former abnormalities add {• P A ∧ ¬ P A } ◮ or the more complicated �� ◦ P � I A i ∧ ¬ P � � ∨ � � ◦ P � J A j ∧ ¬ P � �� I A i J A j in ∅� = J ⊂ I combination with If A ⊢ CL B , then • P A ⊢ ◦ P A . 1 • P( a ∧ b ) PREM ∅ 2 • O ¬ a PREM ∅ 3 ◦ P a 1; RU ∅ 4 ◦ P b 1; RU ∅ ◦ O ¬ a ∅ 5 2; RU 6 ( ◦ O ¬ a ∧ ¬ O ¬ a ) ∨ ( ◦ P a ∧ 3,5; RU ∅ ¬ P a ) 16/29

  51. Permissions ◮ add new connective P ◮ besides the former abnormalities add {• P A ∧ ¬ P A } ◮ or the more complicated �� ◦ P � I A i ∧ ¬ P � � ∨ � � ◦ P � J A j ∧ ¬ P � �� I A i J A j in ∅� = J ⊂ I combination with If A ⊢ CL B , then • P A ⊢ ◦ P A . 1 • P( a ∧ b ) PREM ∅ 2 • O ¬ a PREM ∅ 3 ◦ P a 1; RU ∅ 4 ◦ P b 1; RU ∅ ◦ O ¬ a ∅ 5 2; RU 6 ( ◦ O ¬ a ∧ ¬ O ¬ a ) ∨ ( ◦ P a ∧ 3,5; RU ∅ ¬ P a ) 7 ! ¬ a ∨ ( • P( a ∧ b ) ∧¬ P( a ∧ b )) 1,2; RU ∅ 16/29

  52. Permissions ◮ add new connective P ◮ besides the former abnormalities add {• P A ∧ ¬ P A } ◮ or the more complicated �� ◦ P � I A i ∧ ¬ P � � ∨ � � ◦ P � J A j ∧ ¬ P � �� I A i J A j in ∅� = J ⊂ I combination with If A ⊢ CL B , then • P A ⊢ ◦ P A . 1 • P( a ∧ b ) PREM ∅ 2 • O ¬ a PREM ∅ 3 ◦ P a 1; RU ∅ 4 ◦ P b 1; RU ∅ ◦ O ¬ a ∅ 5 2; RU 6 ( ◦ O ¬ a ∧ ¬ O ¬ a ) ∨ ( ◦ P a ∧ 3,5; RU ∅ ¬ P a ) 7 ! ¬ a ∨ ( • P( a ∧ b ) ∧¬ P( a ∧ b )) 1,2; RU ∅ 8 P b 4; RC {◦ P b ∧ ¬ P b } 16/29

  53. Excursus: Discussive Context and Rescher-Manor Consequence Relations ◮ Discussant 1 states: a 17/29

  54. Excursus: Discussive Context and Rescher-Manor Consequence Relations ◮ Discussant 1 states: a ◮ Discussant 2 states: ¬ a ∨ b 17/29

  55. Excursus: Discussive Context and Rescher-Manor Consequence Relations ◮ Discussant 1 states: a ◮ Discussant 2 states: ¬ a ∨ b ◮ Question: should we derive b ? 17/29

  56. Excursus: Discussive Context and Rescher-Manor Consequence Relations ◮ Discussant 1 states: a ◮ Discussant 2 states: ¬ a ∨ b ◮ Question: should we derive b ? ◮ Problem: Discussant 2 may not agree with/support a but nevertheless not state ¬ a (e.g., due to lack of knowledge) 17/29

Recommend


More recommend