dynamic graph coloring
play

Dynamic Graph Coloring Luis Barba 1 Jean Cardinal 2 Matias Korman 3 - PowerPoint PPT Presentation

Dynamic Graph Coloring Luis Barba 1 Jean Cardinal 2 Matias Korman 3 Stefan Langerman 2 Andr van Renssen 4 , 5 Marcel Roeloffzen 4 , 5 Sander Verdonschot 6 1 ETH Zrich 2 Universit Libre de Bruxelles 3 Tohoku University 4 National Institute of


  1. Dynamic Graph Coloring Luis Barba 1 Jean Cardinal 2 Matias Korman 3 Stefan Langerman 2 André van Renssen 4 , 5 Marcel Roeloffzen 4 , 5 Sander Verdonschot 6 1 ETH Zürich 2 Université Libre de Bruxelles 3 Tohoku University 4 National Institute of Informatics 5 JST, ERATO, Kawarabayashi Large Graph Project 6 Carleton University July 31, 2017 Sander Verdonschot Dynamic Graph Coloring

  2. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  3. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  4. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  5. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  6. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  7. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  8. Problem • Maintain a proper coloring of a changing graph Sander Verdonschot Dynamic Graph Coloring

  9. Problem • Maintain a proper coloring of a changing graph: • Add & remove edges • Add & remove vertices with incident edges Sander Verdonschot Dynamic Graph Coloring

  10. Limit the number of vertex color changes • Easy! Use a new color for every change Limit the number of colors Problem • Easy! Recompute the coloring for every change Sander Verdonschot Dynamic Graph Coloring

  11. • Easy! Use a new color for every change Limit the number of colors Problem • Easy! Recompute the coloring for every change ⇒ Limit the number of vertex color changes Sander Verdonschot Dynamic Graph Coloring

  12. Limit the number of colors Problem • Easy! Recompute the coloring for every change ⇒ Limit the number of vertex color changes • Easy! Use a new color for every change Sander Verdonschot Dynamic Graph Coloring

  13. Problem • Easy! Recompute the coloring for every change ⇒ Limit the number of vertex color changes • Easy! Use a new color for every change ⇒ Limit the number of colors Sander Verdonschot Dynamic Graph Coloring

  14. 2 n • No vertex recolorings n colors for n -colorable graph [Halldórsson & Szegedy, 1992] Our results • O d -approximate coloring with O dn 1 d recolorings • O dn 1 d -approximate coloring with O d recolorings 2 • Maintaining a c -coloring requires n recolorings c c 1 Problem • Trade off the number of colors vs vertex color changes • Optimal coloring ⇒ Ω ( n ) vertex recolorings per update Sander Verdonschot Dynamic Graph Coloring

  15. Our results • O d -approximate coloring with O dn 1 d recolorings • O dn 1 d -approximate coloring with O d recolorings 2 • Maintaining a c -coloring requires n recolorings c c 1 Problem • Trade off the number of colors vs vertex color changes • Optimal coloring ⇒ Ω ( n ) vertex recolorings per update 2 n • No vertex recolorings ⇒ log n colors for log n -colorable graph [Halldórsson & Szegedy, 1992] Sander Verdonschot Dynamic Graph Coloring

  16. 2 • Maintaining a c -coloring requires n recolorings c c 1 Problem • Trade off the number of colors vs vertex color changes • Optimal coloring ⇒ Ω ( n ) vertex recolorings per update 2 n • No vertex recolorings ⇒ log n colors for log n -colorable graph [Halldórsson & Szegedy, 1992] Our results • O ( d ) -approximate coloring with O ( dn ( 1 / d ) ) recolorings • O ( dn ( 1 / d ) ) -approximate coloring with O ( d ) recolorings Sander Verdonschot Dynamic Graph Coloring

  17. Problem • Trade off the number of colors vs vertex color changes • Optimal coloring ⇒ Ω ( n ) vertex recolorings per update 2 n • No vertex recolorings ⇒ log n colors for log n -colorable graph [Halldórsson & Szegedy, 1992] Our results • O ( d ) -approximate coloring with O ( dn ( 1 / d ) ) recolorings • O ( dn ( 1 / d ) ) -approximate coloring with O ( d ) recolorings 2 • Maintaining a c -coloring requires Ω ( n c ( c − 1 ) ) recolorings Sander Verdonschot Dynamic Graph Coloring

  18. Upper bound: big-buckets • Vertices are placed in buckets Sander Verdonschot Dynamic Graph Coloring

  19. Upper bound: big-buckets • Each bucket has a fixed size and its own set of colors . . . n 1 /d n 2 /d n ∞ Sander Verdonschot Dynamic Graph Coloring

  20. Upper bound: big-buckets • Initially, all vertices are in the reset bucket Sander Verdonschot Dynamic Graph Coloring

  21. Upper bound: big-buckets • Changed vertices are placed in the first bucket Sander Verdonschot Dynamic Graph Coloring

  22. Upper bound: big-buckets • Changed vertices are placed in the first bucket Sander Verdonschot Dynamic Graph Coloring

  23. Upper bound: big-buckets • Changed vertices are placed in the first bucket Sander Verdonschot Dynamic Graph Coloring

  24. Upper bound: big-buckets • Changed vertices are placed in the first bucket Sander Verdonschot Dynamic Graph Coloring

  25. Upper bound: big-buckets • When a bucket fills up, it is emptied in the next one Sander Verdonschot Dynamic Graph Coloring

  26. Upper bound: big-buckets • When a bucket fills up, it is emptied in the next one Sander Verdonschot Dynamic Graph Coloring

  27. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  28. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  29. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  30. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  31. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  32. Upper bound: big-buckets • New vertices also go to the first bucket Sander Verdonschot Dynamic Graph Coloring

  33. Upper bound: big-buckets • New vertices also go to the first bucket ( d + 1 ) -approximate coloring with O ( dn 1 / d ) recolorings per update n 2 n n ( d − 1 ) /d n n 2 /d . . . n 1 /d n 1 /d Sander Verdonschot Dynamic Graph Coloring

  34. Upper bound: small-buckets • Split each big bucket into n 1 / d smaller ones • O ( dn 1 / d ) -approximate coloring with d + 2 recolorings per update n 1 /d n 1 /d n 1 /d 1 1 1 . . . n 1 /d n 1 /d Sander Verdonschot Dynamic Graph Coloring

  35. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Warm-up: 2-coloring a forest Sander Verdonschot Dynamic Graph Coloring

  36. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Build 3 stars of size n / 3 Sander Verdonschot Dynamic Graph Coloring

  37. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Connect 2 with the same color root Sander Verdonschot Dynamic Graph Coloring

  38. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Connect 2 with the same color root Sander Verdonschot Dynamic Graph Coloring

  39. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Connect 2 with the same color root . Repeat Sander Verdonschot Dynamic Graph Coloring

  40. • Maintaining a 2-coloring of a forest requires n recolorings per update Lower bound • Connect 2 with the same color root . Repeat Sander Verdonschot Dynamic Graph Coloring

  41. Lower bound • Connect 2 with the same color root . Repeat • Maintaining a 2-coloring of a forest requires Ω ( n ) recolorings per update Sander Verdonschot Dynamic Graph Coloring

  42. Lower bound • 3-coloring a forest Sander Verdonschot Dynamic Graph Coloring

  43. Lower bound • Build n 1 / 3 stars of size n 2 / 3 n 1 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  44. Lower bound • Assign most common leaf colour to trees n 1 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  45. Lower bound • Keep at least n 1 / 3 / 3 with the same color n 1 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  46. Lower bound • Keep at least n 1 / 3 / 3 with the same color n 1 / 3 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  47. Lower bound • Group into 3 big trees, each with n 1 / 3 / 9 small trees n 1 / 3 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  48. Lower bound • Group into 3 big trees, each with n 1 / 3 / 9 small trees n 1 / 3 / 3 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  49. Lower bound • If at any point, a small tree has no blue children, reset n 1 / 3 / 9 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  50. Lower bound • If at any point, a small tree has no blue children, reset n 1 / 3 / 9 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  51. Lower bound • Roots of small trees are orange or red n 1 / 3 / 9 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

  52. Lower bound • Connect two big trees with same root color n 1 / 3 / 9 n 2 / 3 n 2 / 3 n 2 / 3 Sander Verdonschot Dynamic Graph Coloring

Recommend


More recommend