dual failure restorability
play

Dual-Failure Restorability of Meta-Mesh Networks Authors: Andres - PowerPoint PPT Presentation

Dual-Failure Restorability of Meta-Mesh Networks Authors: Andres Castillo-Lugo, Tetsu Nakashima, John Doucette March 10 th , 2014 10th International Workshop on Resilient Networks Design and Modeling, Longyearbyen, Svalbard, Norway August 27,


  1. Dual-Failure Restorability of Meta-Mesh Networks Authors: Andres Castillo-Lugo, Tetsu Nakashima, John Doucette March 10 th , 2014 10th International Workshop on Resilient Networks Design and Modeling, Longyearbyen, Svalbard, Norway August 27, 2018 Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  2. Outline • Introduction ✓ Background ✓ Introduction to span-restorable meta-mesh network • Experimental Setup ✓ Network family ✓ Experimental networks and tools • Studies Performed ✓ High restorability meta-mesh capacity design • Conclusions ✓ Experimental Results and Discussion ✓ Final Remarks Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 2 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  3. Introduction Background: Span Restoration Principle • Alternative path segments restore all working channels of the failed span. – Local restoration between the end nodes of the failed span – Multiple restoration routes are possible per span – Restoration path segments for different spans can share spare capacity Loop backs when Restoration Routes restoring full paths Service path B B B A A A Span 1 Span 1 Span 1 Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 3 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  4. Introduction (2) Introduction to Span-Restorable Meta-Mesh Network • • Special interest on chains Inefficient spare capacity allocation in span restoration due to loopback in chains of degree-2 nodes. 𝑋𝑝𝑠𝑙𝑗𝑜𝑕 = 80 𝑋𝑝𝑠𝑙𝑗𝑜𝑕 = 60 𝑋𝑝𝑠𝑙𝑗𝑜𝑕 = 70 Anchor Anchor Node D Node B Node C Node A node node Spare = 70 Spare = 80 Spare = 80 • Meta-mesh breakdown of working capacity: local (LOC) and express (EXP) flow A 𝒙 𝑼𝑷𝑼 = 60 𝒙 𝑼𝑷𝑼 = 80 𝒙 𝑼𝑷𝑼 = 70 Anchor Anchor B Node A Node B Node C Node D node node wLOC = 45 wLOC = 35 C wLOC = 25 wEXP = 35 wEXP = 35 wEXP = 35 D Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 4 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  5. Introduction (3) Introduction to Span-Restorable Meta-Mesh Network (2) • Spare capacity requirements in a chain using the meta- mesh restoration model 𝒙 𝑴𝑷𝑫 = 4 5 Spare = 35 Spare = 45 Spare = 45 Meta-mesh benefits: Anchor Anchor Node D Node C Node A Node B Improved spare capacity in 1 node node sparse network topologies 𝒙 𝑭𝒀𝑸 = 35 2 Up to 35% reduction in spare capacity in prior work [1] • Logical bypass span in the meta-mesh design Only meta-mesh nodes 3 require full OXC functionality Logical Chain Bypass Span OXC OXC [1] W. D. Grover, J. Doucette “Design of a Meta -Mesh of Chain Node B Node C Node D Node A Anchor Anchor Subnetworks: Enhancing the Attractiveness of Mesh-Restorable WDM node node Networking on Low Connectivity Graphs,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 1, pp. January 2002 . Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 5 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  6. Introduction (4) Introduction to Span-Restorable Meta-Mesh Network (3) Meta-mesh network Original network Sprint Communications’ USA backbone network [2]-[3] (used with permission) Original network 𝑒 = 2.37 257 nodes, 305 spans ҧ Lower bound redundancy = 73% Meta-Mesh network 𝑒 = 3.21 77 nodes, 123 spans ҧ The meta- mesh of the Sprint Communications’ USA backbone network [4] Lower bound redundancy = 45% Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 6 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  7. Next… • Introduction ✓ Background ✓ Introduction to span-restorable meta-mesh network • Experimental Setup ✓ Network family ✓ Experimental networks and tools • Studies Performed ✓ High restorability meta-mesh capacity design • Conclusions ✓ Experimental Results and Discussion ✓ Final Remarks Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 7 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  8. ҧ ҧ ҧ ҧ ҧ ҧ ҧ ҧ ҧ ҧ Experimental Setup Network Family • Each network family is created from an initial master network (e.g., 20-node network family). 𝑒 = 3.8 𝑒 = 4.0 𝑒 = 3.7 𝑒 = 3.6 𝑒 = 3.5 𝑒 = 3.9 The master network 𝑒 = 3.1 𝑒 = 3.4 𝑒 = 3.2 𝑒 = 3.3 Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 8 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  9. Experimental Setup (2) Experimental Networks and Tools • Topology of master networks in the 3 network families 20 nodes 40 spans 25 nodes 50 spans 30 nodes 60 spans 58 experimental networks Computational aspects Mathematical modeling software • AMPL v2.9 Optimization solver • Gurobi v6.5 Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 9 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  10. Next… • Introduction ✓ Background ✓ Introduction to span-restorable meta-mesh network • Experimental Setup ✓ Network family ✓ Experimental networks and tools • Studies Performed ✓ High restorability meta-mesh capacity design • Conclusions ✓ Experimental Results and Discussion ✓ Final Remarks Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 10 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  11. Studies Performed Meta-Mesh ILP model Original single-failure meta-mesh ILP model [1] Minimizing total cost (1) 𝐷 𝑘 ∙ 𝑡 𝑘 + 𝑥 𝑘 Minimize 𝑘 ∈ 𝐓 ∀𝑠 ∈ 𝐄 𝑕 𝑠 , 𝑟 = 𝑒 𝑠 Satisfying demand requirement (2) Subject to: 𝑟 ∈ 𝐑 𝑠 𝑠 , 𝑟 ∙ 𝑕 𝑠 , 𝑟 ∀𝑘 ∈ 𝐓 Ensuring enough working capacity (3) 𝑥 𝑘 = 𝜂 𝑘 𝑟 ∈ 𝐑 𝑠 𝑠 ∈ 𝐄 𝑞 = 𝑥 𝑗 ∀𝑗 ∈ 𝐓 (4) Ensuring single-failure restorability 𝑔 𝑗 𝑞 ∈ 𝐐 𝑗 Ensuring enough amount of spare capacity in 𝑞 ∙ 𝑔 ∀𝑗 ∈ 𝐓 𝑒 ∀𝑘 ∈ 𝐓 | 𝑗 ≠ 𝑘 𝑞 (5) 𝑡 𝑘 ≥ 𝜀 𝑗 , 𝑘 direct spans 𝑗 𝑞 ∈ 𝐐 𝑗 Ensuring enough amount of spare capacity in 𝑞 ∙ 𝑔 ∀𝑗 ∈ 𝐓 𝑑 ∀𝑘 ∈ 𝐓 | 𝑗 ≠ 𝑘 ≠ 𝑙 𝑗 𝑞 𝑞 𝑞 (6) 𝑡 𝑘 ≥ 𝜀 𝑗 , 𝑘 + 𝜀 𝑙 𝑗 , 𝑘 ∙ 𝑔 chain spans 𝑙 𝑗 𝑗 𝑞 ∈ 𝐐 𝑗 𝑞 ∈ 𝐐 𝑙𝑗 Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 11 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  12. Studies Performed (2) Average Dual-Failure Restorability The original single-failure meta-mesh ILP model [1] responds to a dual-span failure scenario with the exception of dual-failure scenarios in degree-2 nodes. • These results demonstrate how the redistribution of spare capacity in meta-mesh networks enhance the achievable dual-failure restorability. 25 nodes and 50 spans network family 30 nodes and 60 spans network family 1.0 1.0 Benchmark Benchmark Ave. Dual Failure Restorability R 2 Ave. Dual Failure Restorability R 2 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 Network Average Nodal Degree Network Average Nodal Degree Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 12 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

  13. Studies Performed (3) Topology Considerations Eliminating infeasible solutions (b) Meta-mesh 𝐓 d x 𝐓 c (a) Original network Disconnected network area (d) Meta-mesh 𝑻 d x 𝑻 d (d) Meta-mesh 𝑻 c x 𝑻 c Castillo-Lugo, A., Nakashima-Paniagua, T., Doucette, J. 13 “Dual -Failure Restorability of Meta- Mesh Networks” RNDM 2018, Longyearbyen, Norway (Aug 27-29, 2018)

Recommend


More recommend