domain decomposition for multiscale pdes
play

Domain Decomposition for Multiscale PDEs Robert Scheichl Bath - PowerPoint PPT Presentation

Domain Decomposition for Multiscale PDEs Robert Scheichl Bath Institute for Complex Systems Department of Mathematical Sciences University of Bath in collaboration with Clemens Pechstein (Linz, AUT), Ivan Graham & Jan Van lent (Bath),


  1. Domain Decomposition for Multiscale PDEs Robert Scheichl Bath Institute for Complex Systems Department of Mathematical Sciences University of Bath in collaboration with Clemens Pechstein (Linz, AUT), Ivan Graham & Jan Van lent (Bath), Eero Vainikko (Tartu, EST) Scaling Up & Modelling for Transport and Flow in Porous Media Dubrovnik, Wednesday, October 15th 2008 R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 1 / 24

  2. Motivation: Groundwater Flow Safety assessment for radioactive waste disposal at Sellafield � NIREX UK Ltd. c EDZ CROWN SPACE WASTE VAULTS FAULTED GRANITE GRANITE q + A ( x ) ∇ p = f Darcy’s Law: DEEP SKIDDAW N-S SKIDDAW DEEP LATTERBARROW N-S LATTERBARROW FAULTED TOP M-F BVG Incompressibility: ∇ · q = 0 TOP M-F BVG FAULTED BLEAWATH BVG BLEAWATH BVG FAULTED F-H BVG F-H BVG FAULTED UNDIFF BVG + UNDIFF BVG Boundary Conditions FAULTED N-S BVG N-S BVG FAULTED CARB LST CARB LST FAULTED COLLYHURST COLLYHURST (More generally: Multiphase Flow in Porous Media, e.g. FAULTED BROCKRAM BROCKRAM SHALES + EVAP Oil Reservoir Modelling or CO 2 Sequestration) FAULTED BNHM BOTTOM NHM FAULTED DEEP ST BEES DEEP ST BEES FAULTED N-S ST BEES N-S ST BEES FAULTED VN-S ST BEES VN-S ST BEES FAULTED DEEP CALDER DEEP CALDER FAULTED N-S CALDER N-S CALDER FAULTED VN-S CALDER VN-S CALDER MERCIA MUDSTONE QUATERNARY R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 2 / 24

  3. Model Problem Elliptic PDE in 2D or 3D bounded domain Ω −∇ · ( α ∇ u ) = f + u = 0 on ∂ Ω R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 3 / 24

  4. Model Problem Elliptic PDE in 2D or 3D bounded domain Ω −∇ · ( α ∇ u ) = f + u = 0 on ∂ Ω Highly variable (discontinuous) coefficients α ( x ) R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 3 / 24

  5. Model Problem Elliptic PDE in 2D or 3D bounded domain Ω −∇ · ( α ∇ u ) = f + u = 0 on ∂ Ω Highly variable (discontinuous) coefficients α ( x ) FE discretisation (p.w. linears V h ) on mesh T h : A u = b ( n × n linear system) R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 3 / 24

  6. Model Problem Elliptic PDE in 2D or 3D bounded domain Ω −∇ · ( α ∇ u ) = f + u = 0 on ∂ Ω Highly variable (discontinuous) coefficients α ( x ) FE discretisation (p.w. linears V h ) on mesh T h : A u = b ( n × n linear system) Aim: Find efficient & robust preconditioner for A (i.e. independent of variations in h and in α ( x )) R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 3 / 24

  7. Heterogeneous multiscale deterministic media Society of Petroleum Engineers (SPE) Benchmark SPE10 Multiscale stochastic media ( λ = 5 h , 10 h , 20 h ) R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 4 / 24

  8. Difficulties Requires very fine mesh resolution: h ≪ diam(Ω) A very large and very ill-conditioned, i.e. � α τ � h − 2 κ ( A ) � max α τ ′ τ,τ ′ ∈T h Variation of α ( x ) on many scales (often anisotropic) R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 5 / 24

  9. Difficulties Requires very fine mesh resolution: h ≪ diam(Ω) A very large and very ill-conditioned, i.e. � α τ � h − 2 κ ( A ) � max α τ ′ τ,τ ′ ∈T h Variation of α ( x ) on many scales (often anisotropic) Homogenisation or Scaling Up − → “cell problem” in each cell: Cost ≥ O ( n ) ( n = #DOFs on fine grid) R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 5 / 24

  10. Difficulties Requires very fine mesh resolution: h ≪ diam(Ω) A very large and very ill-conditioned, i.e. � α τ � h − 2 κ ( A ) � max α τ ′ τ,τ ′ ∈T h Variation of α ( x ) on many scales (often anisotropic) Homogenisation or Scaling Up − → “cell problem” in each cell: Cost ≥ O ( n ) ( n = #DOFs on fine grid) Alternative: Multilevel Iterative Solution on fine grid (directly!) − → Cost ≈ O ( n ) as well!! R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 5 / 24

  11. Difficulties Requires very fine mesh resolution: h ≪ diam(Ω) A very large and very ill-conditioned, i.e. � α τ � h − 2 κ ( A ) � max α τ ′ τ,τ ′ ∈T h Variation of α ( x ) on many scales (often anisotropic) Homogenisation or Scaling Up − → “cell problem” in each cell: Cost ≥ O ( n ) ( n = #DOFs on fine grid) Alternative: Multilevel Iterative Solution on fine grid (directly!) − → Cost ≈ O ( n ) as well!! Meaning of � R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 5 / 24

  12. Goals Efficient, scalable & parallelisable method, ◮ robust w.r.t. problem size n and mesh resolution h ◮ robust w.r.t. coefficients α ( x ) ! with underpinning theory = ⇒ “handle” for choice of components R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 6 / 24

  13. Goals Efficient, scalable & parallelisable method, ◮ robust w.r.t. problem size n and mesh resolution h ◮ robust w.r.t. coefficients α ( x ) ! with underpinning theory = ⇒ “handle” for choice of components Possible Methods & Existing Theory Standard Domain Decomposition and Multigrid robust if coarse grid(s) resolve(s) coefficients [Chan, Mathew, Acta Numerica, 94] , [J. Xu, Zhu, Preprint, 07] Otherwise: coefficient-dependent coarse spaces [Alcouffe, Brandt, Dendy et al, SISC, 81] , [Sarkis, Num Math, 97] R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 6 / 24

  14. Practically most successful: Algebraic Multigrid No theory explaining coefficient robustness for standard AMG ! First attempts in [Aksoylu, Graham, Klie, Sch., Comp.Visual.Sci. 08] R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 7 / 24

  15. Practically most successful: Algebraic Multigrid No theory explaining coefficient robustness for standard AMG ! First attempts in [Aksoylu, Graham, Klie, Sch., Comp.Visual.Sci. 08] Two-Level Overlapping Schwarz ◮ [Sarkis, Num Math, 97] ◮ [Graham, Lechner, Sch., Num Math, 07] ◮ [Sch., Vainikko, Computing, 07] ◮ [Graham, Sch., Vainikko, NMPDE, 07] ◮ [Van lent, Sch., Graham, submitted, 08] Th m . κ ( M − 1 A ) � max j δ 2 � α |∇ Ψ j | 2 � L ∞ (Ω) (1 + H /δ ) − → low energy coarse spaces! R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 7 / 24

  16. Practically most successful: Algebraic Multigrid No theory explaining coefficient robustness for standard AMG ! First attempts in [Aksoylu, Graham, Klie, Sch., Comp.Visual.Sci. 08] Two-Level Overlapping Schwarz ◮ [Sarkis, Num Math, 97] ◮ [Graham, Lechner, Sch., Num Math, 07] ◮ [Sch., Vainikko, Computing, 07] ◮ [Graham, Sch., Vainikko, NMPDE, 07] ◮ [Van lent, Sch., Graham, submitted, 08] Th m . κ ( M − 1 A ) � max j δ 2 � α |∇ Ψ j | 2 � L ∞ (Ω) (1 + H /δ ) − → low energy coarse spaces! FETI (Finite Element Tearing & Interconnecting) ◮ [Pechstein, Sch., Num Math, 08] ← − Today! R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 7 / 24

  17. Finite Element Tearing & Interconnecting (non-overlapping dual substructuring techniques) R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 8 / 24

  18. FETI methods – Idea Domain decomposition Ω = � N Ω i =1 Ω i Γ i := ∂ Ω i H i := diam Ω i Ω Ω i j R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

  19. FETI methods – Idea Domain decomposition Ω = � N Ω i =1 Ω i Γ i := ∂ Ω i H i := diam Ω i Conforming FE mesh on Ω (p.w. linear FEs) Mesh size on subdomain Ω i : h i R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

  20. FETI methods – Idea Domain decomposition Ω = � N Ω i =1 Ω i Γ i := ∂ Ω i H i := diam Ω i Conforming FE mesh on Ω Ω i (p.w. linear FEs) Mesh size on subdomain Ω i : h i Subdomain stiffness matrix A i (including boundary, i.e. Neumann) R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

  21. FETI methods – Idea Tearing: Introduce local soln u i , Ω i.e. > 1 dofs per interface node Interconnecting: Enforce conti- nuity by pointwise constraints: u i ( x h ) − u j ( x h ) = 0 , x h ∈ Γ i ∩ Γ j or compactly written, B u := � i B i u i = 0 where u := [ u ⊤ 1 u ⊤ 2 . . . u ⊤ N ] ⊤ R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

  22. FETI methods – Idea Tearing: Introduce local soln u i , Ω i.e. > 1 dofs per interface node Interconnecting: Enforce conti- nuity by pointwise constraints: Introduce Lagrange multipliers to obtain the new global system: � � � � � � A B ⊤ u f = B 0 λ 0 with A := diag ( A i ) & f := [ f ⊤ 1 . . . f ⊤ N ] ⊤ R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

  23. FETI methods – Idea Tearing: Introduce local soln u i , Ω i.e. > 1 dofs per interface node Interconnecting: Enforce conti- nuity by pointwise constraints: Eliminate u & solve dual problem ′′ B A − 1 B ⊤ λ = B A − 1 f ′′ � � ′′ � ′′ (Fully parallel!) 0 0 B ⊤ with preconditioner i B i i 0 S i where S i := A i , ΓΓ − A i , Γ I A − 1 i , II A i , I Γ (Schur complement) . R. Scheichl (Bath) DD for Multiscale PDEs Dubrovnik, Wed 10-15-08 9 / 24

Recommend


More recommend