distan ances an ces and infor ormation g geom eometry y a
play

Distan ances an ces and infor ormation g geom eometry: y: A A - PowerPoint PPT Presentation

Recen ent c con ontribut utions ons to Distan ances an ces and infor ormation g geom eometry: y: A A compu putational onal v viewpoi oint Frank Nielsen Sony Computer Science Laboratories, Inc https://franknielsen.github.io/ 31


  1. Recen ent c con ontribut utions ons to Distan ances an ces and infor ormation g geom eometry: y: A A compu putational onal v viewpoi oint Frank Nielsen Sony Computer Science Laboratories, Inc https://franknielsen.github.io/ 31 st July 2020

  2. Outlin line 1. Siegel-Klein geometry (bounded complex matrix domains) Hilbert geometry of the Siegel disk: The Siegel-Klein disk model https://arxiv.org/abs/2004.08160 2. Information-geometric structures on the Cauchy manifold On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds Entropy 2020, 22(7), 713; https://doi.org/10.3390/e22070713 https://www.mdpi.com/1099-4300/22/7/713 3. Generalizations of the Jensen-Shannon divergence & JS centroids On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means Entropy 2019, 21(5), 485; https://doi.org/10.3390/e21050485 https://www.mdpi.com/1099-4300/21/5/485 On a Generalization of the Jensen–Shannon Divergence and the Jensen–Shannon Centroid Entropy 2020, 22(2), 221; https://doi.org/10.3390/e22020221 https://www.mdpi.com/1099-4300/22/2/221

  3. Hilbert g geom ometry of of the S Sieg egel di disk: The S e Siegel el-Klein di disk mod odel Frank Nielsen Sony Computer Science Laboratories, Inc https://franknielsen.github.io/ https://arxiv.org/abs/2004.08160 July 2020

  4. Main s n standa ndard mod odel els of of h hyper erbolic g c geom eometry Conformal Poincaré model: Hyperbolic Voronoi diagram Metric tensor (Tissot indicatrix) Lesser known non-conformal Klein model: Hyperbolic Voronoi diagram Straight geodesics Hyperbolic Voronoi diagrams in 5 models https://www.youtube.com/watch?v=i9IUzNxeH4o&t=3s Hyperbolic Voronoi diagrams made easy, IEEE ICCSA 2010

  5. Si Sieg egel up upper er s spa pace Birth of symplectic geometry (complex matrix groups, Siegel & Hua, 1940’s) Generalization of the Poincaré upper plane to complex matrix domains : PD: Positive-definite cone Infinitesimal length element: Geodesic length distance: Spectral decomposition with the i-th real eigenvalue Matrix cross-ratio : R: Not Hermitian, but all real eigenvalues!

  6. Sieg Si egel up upper er s spa pace: e: Gener eneralize e PD matrix c con one PD: Positive-definite cone Si Sieg egel up upper er s spa pace: e: Gener eneralize e Poi oincaré up upper er p plane When complex dimension is 1, recover the Poincaré upper plane several equivalent formulas…

  7. Gener eneralized l linea ear f fractional t trans nsformations Siegel upper space metric is invariant under generalized Moebius transformations called (biholomorphic) symplectic maps : (matrix group representation) Real symplectic group Sp(d,R) : Group inverse: (translation Z=A+iB) Group action is transitive : ( → homogeneous space)

  8. Orien entation on-pr pres eser erving isometry i in t the S e Sieg egel el u upper per s space Stabilizer group of Z=iI: The symplectic orthogonal matrices: (informally, play the role of “rotations” in the Siegel geometry) Orientation preserving isometry : PSL(2,R) When complex dimension is 1 (Poincaré upper plane), recover PSL(2,R)

  9. Sieg Si egel di disk dom domain Partial Loewner ordering Disk domain: PSL(2,R) Or equivalently A generalization of Poincaré conformal disk: Spectral/operator norm : PSL(2,R) (= Maximum singular value >=0) Siegel disk domain: Shilov boundary PSL(2,R) Stratified space (by matrix rank )

  10. Distanc nce e in t n the he Si Sieg egel el di disk domain Siegel metric PSL(2,R) in the disk domain: When complex dimension is 1, recover the Poincaré disk metric: Siegel disk distance: PSL(2,R) Siegel translation of W1 to the origin matrix 0 (= Siegel translation): Costly to calculate because we need square root and inverse matrices

  11. Complex sym ymplecti tic gr group (for Si Sieg egel el di disk) Equivalent to Orientation-preserving isometry in the Siegel disk: PSL(2,C) in 1D

  12. Con Conver ersions Si Sieg egel el up upper er spa pace e <-> > Si Sieg egel el di disk Moebius transformations (generalized linear fractional transformations)

  13. Som Some a e app pplications of of Si Sieg egel el symplect ectic geomet etry Radar signal processing: • Frederic Barbaresco. Information geometry of covariance matrix: Cartan-Siegel homogeneous bounded domains, • Mostow/Berger bration and Frechet median. In Matrix information geometry, pages 199-255. Springer, 2013. Ben Jeuris and Raf Vandebril. The Kahler mean of block-Toeplitz matrices with Toeplitz structured blocks. • SIAM Journal on Matrix Analysis and Applications, 37(3):1151-1175, 2016. Congwen Liu and Jiajia Si. Positive Toeplitz operators on the Bergman spaces of the Siegel upper half-space. • Communications in Mathematics and Statistics, pages 1-22, 2019. Image processing: • Reiner Lenz. Siegel descriptors for image processing . IEEE Signal Processing Letters, 23(5):625-628, 2016. Statistics: • Miquel Calvo and Josep M Oller. A distance between elliptical distributions based in an embedding into the Siegel group . • Journal of Computational and Applied Mathematics, 145(2):319-334, 2002. Emmanuel Chevallier, Thibault Forget, Frederic Barbaresco, and Jesus Angulo. Kernel density estimation on the Siegel • space with an application to radar processing . Entropy, 18(11):396, 2016.

  14. Poi oincaré con onformal di disk vs Klein no non-conf nforma mal d disk • Klein disk is non-conformal with geodesics straight Euclidean lines • Klein mode well-suited for computational geometry : Eg., Voronoi diagram Hyperbolic Voronoi diagram Clipped affine diagram (power diagram) Q: What is the equivalent of Klein geometry for the Siegel disk domain?

  15. Hilber ert ( (projec ective) e) g geom eometry Normed vector space Bounded open convex domain Ω Define Hilbert distance : Cross-ratio: Related to Birkhoff geometry on (d+1)-dimensional cones

  16. Rewriting t the he Hilber ert di distance Or equivalently (p,q expressed from linear interpolations of boundary points) :

  17. Si Sieg egel-Klei ein di disk model el Choose constant ½ to match Klein disk geometry In complex dimension 1, recover the Klein disk:

  18. Ca Calculating t g the he Si Sieg egel el-Klei ein di distance nce Line passing through two matrix points: Calculate the two α values on Shilov boundary Siegel-Klein distance: In practice, perform bisection search for the α values…

  19. Special case I Si Sieg egel-Klein n di distance t nce to o the he or origin (zero matri rix 0 0) Solve for and Siegel disk distance: Exact

  20. Special case II Sieg egel el-Klei ein d n distanc nce: e: Line p e passing ng thr hrough t ough the o e origin Line (K1K2) passing through the origin: Exact Siegel-Klein distance:

  21. Special case III Si Sieg egel-Klei ein di distance nce be between een di diagonal m matrices ces Solve d quadratic systems for getting two α values: Siegel-Klein distance: Exact

  22. App pproximating H Hilber ert g geom eometry with nes nested dom ed domains Enough to check in 1D:

  23. Guaranteed eed a approximation o on of the Sieg egel el-Kl Klein d distance

  24. Con Conver erting g Si Sieg egel el-Po Poincaré (W) t to/ o/from Si Sieg egel-Klei ein ( (K) Radial contraction to the origin: Siegel-Klein-> Siegel-Poincaré Radial expansion to the origin: Siegel-Poincaré-> Siegel-Klein-

  25. Si Sieg egel-Klei ein g geod eodes esics cs are e unique E e Euc uclidea ean s straigh ght Follow from the definition of the Hilbert distance and the cross-ratio properties : Main advantage of the Siegel-Klein model is that geodesics are straight Many computational geometric techniques thus apply: For example: Smallest Enclosing Balls, etc.

  26. Geodes eodesics cs i in H Hilber ert g geom eometry may not not be be un unique Hexagonal ball shapes Hilbert simplex geometry (isometric to a normed space) https://www.youtube.com/watch?v=Gz0Vjk5quQE Geodesics in Cayley-Klein geometry are unique. (= Hilbert geometry for ellipsoidal domains ) Hilbert geometry of elliptope (space of correlation matrices) https://franknielsen.github.io/elliptope/index.html Clustering in Hilbert’s projective geometry: The case studies of the probability simplex and the elliptope of correlation matrices

Recommend


More recommend