diffusion updates mainly mc simulations
play

Diffusion updates mainly MC simulations Thomas Karl Warburton, - PowerPoint PPT Presentation

Diffusion updates mainly MC simulations Thomas Karl Warburton, with help from Michelle Stancari and Dom Brailsford What Ive shown before Want to determine interaction times using diffusion. Use the change in RMS and the change in


  1. Diffusion updates – mainly MC simulations Thomas Karl Warburton, with help from Michelle Stancari and Dom Brailsford

  2. What I’ve shown before Want to determine interaction times using diffusion. ✤ Use the change in RMS and the change in RMS/Charge of the hits ✤ along the track. Make look-up tables using tracks with known angles (using the counter ✤ coincidences). Use these look-up tables on a set of tracks to predict an interaction time ✤ for the track. This interaction time can then be compared with the time of the ✤ counter coincidence. I did this for both a sample of data runs, and an MC sample at 250 V. ✤ 1

  3. What I’ve shown before – Sept Collab 140 Number 100 Number 120 90 PRELIMINARY PRELIMINARY 80 100 70 80 60 50 60 40 40 35t data 35t data 30 20 20 35t CRY MC 35t CRY MC 10 0 − − 1000 500 0 500 1000 1500 2000 µ Difference in predicted and reconstructed interaction time ( s) 0 − − 1000 500 0 500 1000 1500 2000 µ Difference in predicted and reconstructed interaction time ( s) Predicted times using the RMS/Q metric Predicted times using the RMS metric ✤ Increased width of data predictions. ✤ Tighter distribution around 0 difference for RMS/Q ✤ When converted to a drift distance this times are < 5 cm. 2

  4. What is new? ✤ I made some MC challenge like samples with different: ✤ Diffusion consts. 0, 50, 100, 200 ✤ Electron lifetimes: 1, 2, 3, 5, 8 ✤ Electric fields: 250, 275, 500 ✤ Didn’t want to make LOADS of samples, so only change one parameter from a baseline of 100% diffusion, 3 ms, 500 V. 3

  5. Changing the diffusion constants 24000 Number Number 3ms 500V 0Diff 3ms 500V 0Diff 30000 22000 3ms 500V 0Diff 3ms 500V 0Diff 3ms 500V 50Diff 3ms 500V 50Diff 20000 3ms 500V 50Diff 3ms 500V 50Diff 25000 18000 3ms 500V 100Diff 3ms 500V 100Diff 16000 3ms 500V 100Diff 3ms 500V 100Diff 20000 3ms 500V 200Diff 3ms 500V 200Diff 14000 3ms 500V 200Diff 3ms 500V 200Diff 12000 15000 10000 8000 10000 6000 4000 5000 2000 0 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 0 0.005 0.01 0.015 0.02 0.025 0.03 Hit RMS Hit RMS divided by hit charge 2.6 Mean value for hit RMS (ticks, 500 ns) 3ms 500V 0Diff Top Left – RMS at 20 cm 3ms 500V 0Diff 2.5 3ms 500V 50Diff 3ms 500V 50Diff 2.4 3ms 500V 100Diff 3ms 500V 100Diff Top Right – RMS/Q at 20 cm 2.3 3ms 500V 200Diff 3ms 500V 200Diff 2.2 2.1 Bottom left – RMS MPVs at 2 increasing drift distances 1.9 1.8 0 20 40 60 80 100 120 140 160 180 200 Drift Distance (cm) 4

  6. Changing the diffusion constants 2.05 Intercept of fit (ticks) Number 3ms 500V 0Diff 3500 3ms 500V 0Diff 3ms 500V 0Diff 3ms 500V 50Diff 3000 3ms 500V 50Diff 2 3ms 500V 50Diff 3ms 500V 100Diff 3ms 500V 100Diff 2500 3ms 500V 100Diff 1.95 3ms 500V 200Diff 3ms 500V 200Diff 2000 3ms 500V 200Diff 1500 1.9 1000 1.85 500 1.8 0 − − − 0 5 10 15 20 25 30 35 40 600 400 200 0 200 400 600 ° Track Angle ( ) Time (ms) Number 3ms 500V 0Diff Top Left – RMS MPV at 0 cm 3ms 500V 0Diff 3000 3ms 500V 50Diff 3ms 500V 50Diff 2500 3ms 500V 100Diff Top Right – AvDiff in predicted and 3ms 500V 100Diff 2000 3ms 500V 200Diff 3ms 500V 200Diff counter time for RMS 1500 Bottom left – AvDiff in predicted 1000 500 and counter time for RMS/Q 0 − − − 600 400 200 0 200 400 600 Time (ms) 5

  7. Changing the electron lifetime Number Number 1ms 500V 100Diff 1ms 500V 100Diff 16000 1ms 500V 100Diff 1ms 500V 100Diff 2ms 500V 100Diff 2ms 500V 100Diff 12000 2ms 500V 100Diff 14000 2ms 500V 100Diff 3ms 500V 100Diff 3ms 500V 100Diff 3ms 500V 100Diff 10000 3ms 500V 100Diff 12000 5ms 500V 100Diff 5ms 500V 100Diff 5ms 500V 100Diff 5ms 500V 100Diff 10000 8000 8ms 500V 100Diff 8ms 500V 100Diff 8ms 500V 100Diff 8ms 500V 100Diff 8000 6000 6000 4000 4000 2000 2000 0 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 0 0.005 0.01 0.015 0.02 0.025 0.03 Hit RMS Hit RMS divided by hit charge 2.3 Mean value for hit RMS (ticks, 500 ns) 1ms 500V 100Diff 1ms 500V 100Diff Top Left – RMS at 20 cm 2.25 2ms 500V 100Diff 2ms 500V 100Diff 2.2 3ms 500V 100Diff 3ms 500V 100Diff 2.15 5ms 500V 100Diff Top Right – RMS/Q at 20 cm 5ms 500V 100Diff 2.1 8ms 500V 100Diff 8ms 500V 100Diff 2.05 2 Bottom left – RMS MPVs at 1.95 1.9 increasing drift distances 1.85 1.8 0 20 40 60 80 100 120 140 160 180 200 Drift Distance (cm) 6

  8. Changing the electron lifetime 2.02 Intercept of fit (ticks) Number 1ms 500V 100Diff 1ms 500V 100Diff 1ms 500V 100Diff 2 2ms 500V 100Diff 3000 2ms 500V 100Diff 2ms 500V 100Diff 1.98 3ms 500V 100Diff 3ms 500V 100Diff 2500 3ms 500V 100Diff 1.96 5ms 500V 100Diff 5ms 500V 100Diff 5ms 500V 100Diff 1.94 2000 8ms 500V 100Diff 8ms 500V 100Diff 8ms 500V 100Diff 1.92 1500 1.9 1.88 1000 1.86 500 1.84 1.82 0 − − 0 5 10 15 20 25 30 35 40 100 50 0 50 100 ° Track Angle ( ) Drift Distance (cm) 3500 Number 1ms 500V 100Diff 1ms 500V 100Diff Top Left – RMS MPV at 0 cm 2ms 500V 100Diff 3000 2ms 500V 100Diff 3ms 500V 100Diff 3ms 500V 100Diff 2500 Top Right – AvDiff in predicted and 5ms 500V 100Diff 5ms 500V 100Diff 2000 8ms 500V 100Diff counter time for RMS 8ms 500V 100Diff 1500 Bottom left – AvDiff in predicted 1000 500 and counter time for RMS/Q 0 − − − 600 400 200 0 200 400 600 Time (ms) 7

  9. Changing the electric field Number Number 3ms 250V 100Diff 3ms 250V 100Diff 14000 16000 3ms 250V 100Diff 3ms 250V 100Diff 14000 12000 3ms 375V 100Diff 3ms 375V 100Diff 12000 3ms 375V 100Diff 3ms 375V 100Diff 10000 3ms 500V 100Diff 3ms 500V 100Diff 10000 8000 3ms 500V 100Diff 3ms 500V 100Diff 8000 6000 6000 4000 4000 2000 2000 0 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 0 0.005 0.01 0.015 0.02 0.025 0.03 Hit RMS Hit RMS divided by hit charge 3 Mean value for hit RMS (ticks, 500 ns) 3ms 250V 100Diff Top Left – RMS at 20 cm 3ms 250V 100Diff 2.8 3ms 375V 100Diff 3ms 375V 100Diff 2.6 Top Right – RMS/Q at 20 cm 3ms 500V 100Diff 3ms 500V 100Diff 2.4 Bottom left – RMS MPVs at 2.2 2 increasing drift distances 1.8 0 20 40 60 80 100 120 140 160 180 200 Drift Distance (cm) 8

  10. Changing the electric field 2.5 Intercept of fit (ticks) 3500 Number 3ms 250V 100Diff 3ms 250V 100Diff 3ms 250V 100Diff 2.4 3000 3ms 375V 100Diff 3ms 375V 100Diff 2.3 2500 3ms 375V 100Diff 3ms 500V 100Diff 3ms 500V 100Diff 2.2 2000 3ms 500V 100Diff 2.1 1500 2 1000 1.9 500 1.8 0 − − 0 5 10 15 20 25 30 35 40 100 50 0 50 100 ° Track Angle ( ) Drift Distance (cm) Number 3ms 250V 100Diff 3500 Top Left – RMS MPV at 0 cm 3ms 250V 100Diff 3000 3ms 375V 100Diff 3ms 375V 100Diff Top Right – AvDiff in predicted and 2500 3ms 500V 100Diff 2000 3ms 500V 100Diff counter time for RMS 1500 Bottom left – AvDiff in predicted 1000 500 and counter time for RMS/Q 0 − − 100 50 0 50 100 Drift Distance (cm) 9

  11. Observations from these samples ✤ I need to sort out the placing of the legends… ✤ The RMS/Q method is more accurate, even when the electron lifetime grows and when the electric field is increased. ✤ The distributions are not centered around 0. ✤ This is because of averaging numbers found by predicting times from non-symmetric distributions. ✤ The first two plots for each sample aren’t symmetric but when calculating AvDiff I take the average of the predicted times for hit. 10

  12. Still to do… ✤ I also want to make a sample which has increased noise levels. I wasn’t sure what to do about tuning of reco, but I think I’ll just try increasing threshold? ✤ Only using EW counters for this, so a very narrow range of angles. ✤ Only using collection plane wires, so not sensitive to vertical muons. ✤ I don’t have time to expand the angular range used for my thesis, but as a proof of principle application to only collection planes is enough (Michelle and I). 11

Recommend


More recommend