diffusion processes and dimensionality reduction on
play

Diffusion Processes and Dimensionality Reduction on Manifolds ESI, - PowerPoint PPT Presentation

Faculty of Science Diffusion Processes and Dimensionality Reduction on Manifolds ESI, Vienna, Feb. 2015 Stefan Sommer Department of Computer Science, University of Copenhagen February 23, 2015 Slide 1/22 Outline Dimensionality Reduction


  1. Faculty of Science Diffusion Processes and Dimensionality Reduction on Manifolds ESI, Vienna, Feb. 2015 Stefan Sommer Department of Computer Science, University of Copenhagen February 23, 2015 Slide 1/22

  2. Outline • Dimensionality Reduction • Diffusion PCA • Development and Anisotropic Diffusions • Examples Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 2/22

  3. Dimensionality Reduction in Non-Linear Manifolds • dim. reduction and linearizations - mappings from non-linear manifolds to low dimensional Euclidean space that preserves structure of data • Non-Euclidean generalizations of PCA : • Principal Geodesic Analysis (PGA, Fletcher et al., ’04) • Geodesic PCA (GPCA, Huckeman et al., ’10) • Horizontal Component Analysis (HCA, Sommer, ’13) • Principal Nested Spheres ((C)PNS, Jung et al., ’12) • Barycentric Subspaces (BS, Pennec, ’15) Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 3/22

  4. Dimensionality Reduction in Non-Linear Manifolds • dim. reduction and linearizations - mappings from non-linear manifolds to low dimensional Euclidean space that preserves structure of data • Non-Euclidean generalizations of PCA : PGA: analysis • Principal Geodesic Analysis (PGA, Fletcher et al., ’04) relative to the • Geodesic PCA (GPCA, Huckeman et al., ’10) data mean • Horizontal Component Analysis (HCA, Sommer, ’13) • Principal Nested Spheres ((C)PNS, Jung et al., ’12) • Barycentric Subspaces (BS, Pennec, ’15) Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 3/22

  5. Dimensionality Reduction in Non-Linear Manifolds • dim. reduction and linearizations - mappings from non-linear manifolds to low dimensional Euclidean space that preserves structure of data • Non-Euclidean generalizations of PCA : PGA: analysis • Principal Geodesic Analysis (PGA, Fletcher et al., ’04) relative to the • Geodesic PCA (GPCA, Huckeman et al., ’10) data mean • Horizontal Component Analysis (HCA, Sommer, ’13) • Principal Nested Spheres ((C)PNS, Jung et al., ’12) • Barycentric Subspaces (BS, Pennec, ’15) data points on non-linear manifold Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 3/22

  6. Dimensionality Reduction in Non-Linear Manifolds • dim. reduction and linearizations - mappings from non-linear manifolds to low dimensional Euclidean space that preserves structure of data • Non-Euclidean generalizations of PCA : PGA: analysis • Principal Geodesic Analysis (PGA, Fletcher et al., ’04) relative to the • Geodesic PCA (GPCA, Huckeman et al., ’10) data mean • Horizontal Component Analysis (HCA, Sommer, ’13) • Principal Nested Spheres ((C)PNS, Jung et al., ’12) • Barycentric Subspaces (BS, Pennec, ’15) intrinsic mean µ Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 3/22

  7. Dimensionality Reduction in Non-Linear Manifolds • dim. reduction and linearizations - mappings from non-linear manifolds to low dimensional Euclidean space that preserves structure of data • Non-Euclidean generalizations of PCA : PGA: analysis • Principal Geodesic Analysis (PGA, Fletcher et al., ’04) relative to the • Geodesic PCA (GPCA, Huckeman et al., ’10) data mean • Horizontal Component Analysis (HCA, Sommer, ’13) • Principal Nested Spheres ((C)PNS, Jung et al., ’12) • Barycentric Subspaces (BS, Pennec, ’15) tangent space T µ M Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 3/22

  8. Dimensionality Reduction in Non-Linear Manifolds • dim. reduction and linearizations - mappings from non-linear manifolds to low dimensional Euclidean space that preserves structure of data • Non-Euclidean generalizations of PCA : PGA: analysis • Principal Geodesic Analysis (PGA, Fletcher et al., ’04) relative to the • Geodesic PCA (GPCA, Huckeman et al., ’10) data mean • Horizontal Component Analysis (HCA, Sommer, ’13) • Principal Nested Spheres ((C)PNS, Jung et al., ’12) • Barycentric Subspaces (BS, Pennec, ’15) projection of data point to T µ M Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 3/22

  9. Dimensionality Reduction in Non-Linear Manifolds • dim. reduction and linearizations - mappings from non-linear manifolds to low dimensional Euclidean space that preserves structure of data PGA: analysis • Non-Euclidean generalizations of PCA : relative to the • Principal Geodesic Analysis (PGA, Fletcher et al., ’04) data mean • Geodesic PCA (GPCA, Huckeman et al., ’10) • Horizontal Component Analysis (HCA, Sommer, ’13) • Principal Nested Spheres ((C)PNS, Jung et al., ’12) • Barycentric Subspaces (BS, Pennec, ’15) Euclidean PCA in tangent space Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 3/22

  10. Dimensionality Reduction in Non-Linear Manifolds • dim. reduction and linearizations - mappings from non-linear manifolds to low dimensional Euclidean space that preserves structure of data • Non-Euclidean generalizations of PCA : • Principal Geodesic Analysis (PGA, Fletcher et al., ’04) • Geodesic PCA (GPCA, Huckeman et al., ’10) • Horizontal Component Analysis (HCA, Sommer, ’13) • Principal Nested Spheres ((C)PNS, Jung et al., ’12) • Barycentric Subspaces (BS, Pennec, ’15) Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 3/22

  11. Dimensionality Reduction in Non-Linear PGA: Manifolds • dim. reduction and linearizations - mappings from non-linear manifolds to low dimensional Euclidean GPCA: space that preserves structure of data • Non-Euclidean generalizations of PCA : • Principal Geodesic Analysis (PGA, Fletcher et al., ’04) • Geodesic PCA (GPCA, Huckeman et al., ’10) • Horizontal Component Analysis (HCA, Sommer, ’13) • Principal Nested Spheres ((C)PNS, Jung et al., ’12) • Barycentric Subspaces (BS, Pennec, ’15) HCA: Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 3/22

  12. PGA, GPCA, HCA, PNS, . . . • search for explicitly constructed parametric subspaces: geodesic sprays, geodesics, iterated development, . . . • in general manifolds, these subspaces are not totally geodesic • projections to subspaces are problematic: geodesics may be dense on tori Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 4/22

  13. Generalizing Linear Statistics Euclidean Riemannian norm � x − y � distances d ( x , y ) vectors v 0 for geodesics linear subspaces geodesic sprays . . . . . . why are geodesics fundamental when estimating covariance? • Euclidean space analogies can lead to non-local constructions • to goal of this talk is to get closer to constructions defined “infinitesimally” Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 5/22

  14. Euclidean PCA Usual formulation: • eigendecomposition ( u 1 , λ 1 ) ,..., ( u d , λ d ) of sample covar. matrix C • principal components: x n = U T ( y n − µ ) Probabilistic interpretation (Tipping, Bishop, ’99): • latent variable model y = Wx + µ + ε , ε ∼ N ( 0 , σ 2 I ) x ∼ N ( 0 , I ) , • marginal distribution y ∼ N ( µ , C σ ) , C σ = WW T + σ 2 I • MLE of W : W ML = U (Λ − σ 2 I ) 1 / 2 + rotation Λ = diag ( λ 1 ,..., λ d ) • principal components: E [ x n | y n ] = ( W T W + σ 2 I ) − 1 W T ML ( y n − µ ) Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 6/22

  15. Diffusion PCA • probabilistic PCA does not explicitly use subspaces • on Riemannian manifolds, the Eells-Elworthy-Malliavin construction gives a map � Diff : FM → Dens ( M ) • Γ ⊂ Dens ( M ) : the image � Diff ( FM ) , the set of (normalized) densities resulting from diffusions in FM • µ ∈ Γ ≈ anisotropic normal distribution • with µ = � Diff ( x , X α ) = p µ µ 0 , define the log-likelihood N ∑ ln L ( x , X α ) = ln L ( µ ) = ln p µ ( y i ) i = 1 • Diffusion PCA: maxim. ln L ( x , X α ) for ( x , X α ) ∈ FM • MLE of data y i under the assumption y ∼ µ ∈ Γ Stefan Sommer (sommer@diku.dk) (Department of Computer Science, University of Copenhagen) — Diffusion Processes and Dimensionality Reduction on Manifolds Slide 7/22

Recommend


More recommend