diffusion in a simplified random lorentz gas
play

Diffusion in a simplified random Lorentz gas el Lefevere 1 Rapha - PowerPoint PPT Presentation

Diffusion in a simplified random Lorentz gas el Lefevere 1 Rapha 1Laboratoire de Probabilit es et mod` eles al eatoires. Universit e Paris Diderot (Paris 7). Mathematical Statistical Physics in Kyoto 2013. fsu-logo Goal : Introduce


  1. Diffusion in a simplified random Lorentz gas el Lefevere 1 Rapha¨ 1Laboratoire de Probabilit´ es et mod` eles al´ eatoires. Universit´ e Paris Diderot (Paris 7). Mathematical Statistical Physics in Kyoto 2013. fsu-logo

  2. Goal : Introduce a new model designed to derive macroscopic diffusion from a deterministic (but with random parameters) microscopic dynamics in a “‘typical” sense. RL Macroscopic diffusion from a Hamilton-like dynamics Journal of Statistical Physics, Volume 151 (5),861-869 (2013) fsu-logo

  3. Diffusion of particles : Fick’s law fsu-logo

  4. From microscopic dynamics to macroscopic dynamics :Fick’s law Fick’s Law :  ∂ t ρ ( x, t ) = ∂ x ( D ( ρ ) ∂ x ρ ( x, t )) , t > 0 , x ∈ [0 , 1] ∂ x ρ (0 , t ) = ∂ x ρ (1 , t ) = 0 , t > 0 fsu-logo

  5. Hamiltonian dynamics : two facts/objections Loschmidt : Microscopic dynamics is reversible, macroscopic dynamics is not. Zermelo : Hamiltonian dynamics in a bounded domain is almost surely recurrent. Theorem : Poincar´ e recurrence theorem Let ( X, A , µ ) a measure space such that µ ( X ) < ∞ and f : X → X a map such that for any A ∈ A , µ ( f − 1 ( A )) = µ ( A ), then ∀ B ∈ A , µ [ { x ∈ B : ∃ N, ∀ n ≥ N, f n ( x ) / ∈ B } ] = 0 fsu-logo

  6. Derivation of macroscopic evolution equations :models Periodic Lorentz gas Bunimovich-Sinai shows that for large time the rescaled motion of a test particle is diffusive. fsu-logo

  7. Derivation of macroscopic evolution equations :models Random Lorentz gas fsu-logo

  8. Derivation of macroscopic evolution equations :models Ehrenfest random wind-tree model fsu-logo

  9. The model fsu-logo

  10. The model k i Y C N = R i = { ( k, i ) : k ∈ { 1 , . . . , R } , i ∈ {− N, . . . , N }} . i ∈ Λ N fsu-logo Scatterers : variables ξ ( k, i ) ∈ { 0 , 1 }

  11. The model k i Dynamical system τ : C N → C N : τ ( k, i ) = J ( k, i )( k + 1 , i + 1) + J ( k, i − 1)( k + 1 , i − 1) + (1 − J ( k, i ))(1 − J ( k, i − 1))( k + 1 , i ) J ( k, i ) = ξ ( k, i )(1 − ξ ( k, i − 1))(1 − ξ ( k, i + 1)) fsu-logo

  12. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  13. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  14. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  15. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  16. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  17. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  18. Random cycles representation of the quantum Heisenberg ferromagnet Balint Toth Graph Λ = ( V , E ). To each edge attach independent Poisson processes on [0 , β ] of unit intensity, β > 0. For each realisations of the Poisson processes, create a set of “cycles”. Figures by Daniel Ueltschi !! Other quantum spins systems : Aizenman-Nachtergaele’s random loops. fsu-logo

  19. Evolution of occupation variables k k i i Occupation variable of site ( k, i ) ∈ C N : σ ( k, i ) ∈ { 0 , 1 } . Evolution : σ ( k, i ; t ) = σ ( τ − t ( k, i ); 0) , t ∈ N ∗ or recursion : σ ( k, i ; t ) = (1 − J ( k − 1 , i ))(1 − J ( k − 1 , i − 1)) σ ( k − 1 , i ; t − 1) + J ( k − 1 , i − 1) σ ( k − 1 , i − 1; t − 1) + J ( k − 1 , i ) σ ( k − 1 , i + 1; t − 1) . σ ( · ; t ) is permutation of initial occupation variables σ ( · ; 0). fsu-logo

  20. Facts Dynamics is conservative . τ is injective, thus invertible (reversible). Every point of C N is periodic and R ≤ T ( x ) ≤ R (2 N + 1) , ∀ x ∈ C N . fsu-logo

  21. Interactions with no diffusion fsu-logo

  22. Interactions with no diffusion fsu-logo

  23. Interactions with no diffusion fsu-logo

  24. Interactions with no diffusion fsu-logo

  25. Interactions with no diffusion fsu-logo

  26. Interactions with no diffusion fsu-logo

  27. Interactions with no diffusion fsu-logo

  28. Interactions with no diffusion fsu-logo

  29. Interactions with no diffusion fsu-logo

  30. Diffusion fsu-logo

  31. Diffusion fsu-logo

  32. Diffusion fsu-logo

  33. Diffusion fsu-logo

  34. Diffusion fsu-logo

  35. Diffusion fsu-logo

  36. Diffusion fsu-logo

  37. Diffusion fsu-logo

  38. Diffusion fsu-logo

  39. Diffusion Macroscopic quantity of interest : empirical density of the rings R ρ R ( i, t ) = 1 X σ ( k, i, t ) R k =1 What’s diffusion in this context ? For a given configuration of scatterers, does diffusion occur ? Sometimes yes, sometimes no. How often ? fsu-logo

  40. Diffusion in discrete time and space Let 0 < µ < 1, and the discrete time evolution system for t ∈ N : ρ ( i, t + 1) = ρ ( i, t ) + µ (1 − µ ) 2 [ ρ ( i − 1 , t ) + ρ ( i + 1 , t ) − 2 ρ ( i, t )] 8 > > > < ρ ( − N, t + 1) = ρ ( − N, t ) + µ (1 − µ )[ ρ ( − N + 1 , t ) − ρ ( − N, t )] > > > : ρ ( N, t + 1) = ρ ( N, t ) + µ (1 − µ )[ ρ ( N − 1 , t ) − ρ ( N, t )] Proposition Let { h ( i ) > 0 : i ∈ Λ N } such that P i ∈ Λ N h ( i ) = h , and ρ h such that h ρ h ( i ) = 2 N +1 , ∀ i ∈ Λ N then there exists a unique solution ρ such that ρ ( i, 0) = h ( i ) P i ∈ Λ N ρ ( i, t ) = h , ∀ t ∈ N . ∃ c > 0 such that t →∞ e ct || ρ ( · , t ) − ρ h || = 0 lim fsu-logo

Recommend


More recommend