different flavors
play

Different Flavors Hoang Dau University of Illinois at - PowerPoint PPT Presentation

Coding with Constraints: Different Flavors Hoang Dau University of Illinois at Urbana-Champaign 1 Email: hoangdau@uiuc.edu DIMACS Workshop on Network Coding: the Next 15 Years Rutgers University, NJ, 2015 Part I Coding with Constraints: A


  1. Coding with Constraints: Different Flavors Hoang Dau University of Illinois at Urbana-Champaign 1 Email: hoangdau@uiuc.edu DIMACS Workshop on Network Coding: the Next 15 Years Rutgers University, NJ, 2015

  2. Part I Coding with Constraints: A Quick Survey

  3. Coding with Constraints: Definition 𝑑 1 𝑑 2 𝑦 1 𝑦 2 π‘œ coded 𝑙 data ENCODED symbols symbols 𝑦 𝑙 𝑑 π‘œ CONVENTIONAL CODE 𝑑 π‘˜ = 𝑑 π‘˜ (𝑦 1 , 𝑦 2 , … , 𝑦 𝑙 ) 3

  4. Coding with Constraints: Definition 𝑑 1 𝑑 2 𝑦 1 𝑦 2 π‘œ coded 𝑙 data ENCODED symbols symbols 𝑦 𝑙 𝑑 π‘œ CODE WITH CONSTRAINTS CONVENTIONAL CODE 𝑑 π‘˜ = 𝑑 π‘˜ ({𝑦 𝑗 : 𝑗 ∈ 𝐷 π‘˜ }) , 𝐷 π‘˜ βŠ† {1,2, … , 𝑙} 𝑑 π‘˜ = 𝑑 π‘˜ (𝑦 1 , 𝑦 2 , … , 𝑦 𝑙 ) 4

  5. Coding with Constraints: Example = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) 5

  6. Coding with Constraints: Example = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) Linear code: 𝑑 1 , 𝑑 2 , 𝑑 3 , 𝑑 4 , 𝑑 5 = 𝑦 1 , 𝑦 2 , 𝑦 3 𝑯 where the generator matrix 𝑯 is ? ? 0 0 ? 𝑯 = ? 0 ? ? 0 0 ? 0 ? ? 6

  7. Coding with Constraints: Main Problem Given the constraints 𝑑 π‘˜ = 𝑑 π‘˜ ({𝑦 𝑗 : 𝑗 ∈ 𝐷 π‘˜ }) , 𝐷 π‘˜ βŠ† {1,2, … , 𝑙} how to construct codes that – achieve the optimal minimum distance – over small field size π‘Ÿ β‰ˆ poly π‘œ

  8. Coding with Constraints: Main Problem Given the constraints 𝑑 π‘˜ = 𝑑 π‘˜ ({𝑦 𝑗 : 𝑗 ∈ 𝐷 π‘˜ }) , 𝐷 π‘˜ βŠ† {1,2, … , 𝑙} how to construct codes that – achieve the optimal minimum distance – over small field size π‘Ÿ β‰ˆ poly π‘œ Linear case: given ? ? 0 0 ? 𝑯 = ? 0 ? ? 0 0 ? 0 ? ? how to replace β€œ?” -entries by elements of 𝐺 π‘Ÿ ( π‘Ÿ β‰ˆ poly(π‘œ) ) so that 𝑯 generate a code with optimal distance

  9. Coding with Constraints: Upper Bound Upper Bound (Halbawi-Thill- Hassibi’15, Song -Dau- Yuen’15) 𝑒 ≀ 𝑒 𝑛𝑏𝑦 = 1 + βˆ…β‰ π½βŠ† 1,…,𝑙 ( βˆͺ π‘—βˆˆπ½ 𝑆 𝑗 βˆ’ |𝐽|) min where 𝑆 𝑗 = {π‘˜: 𝑗 ∈ 𝐷 π‘˜ }

  10. Coding with Constraints: Upper Bound Upper Bound (Halbawi-Thill- Hassibi’15, Song -Dau- Yuen’15) 𝑒 ≀ 𝑒 𝑛𝑏𝑦 = 1 + βˆ…β‰ π½βŠ† 1,…,𝑙 ( βˆͺ π‘—βˆˆπ½ 𝑆 𝑗 βˆ’ |𝐽|) min where 𝑆 𝑗 = {π‘˜: 𝑗 ∈ 𝐷 π‘˜ } Properties – 𝑒 𝑛𝑏𝑦 can be found in time poly(π‘œ) π‘œ – codes with 𝑒 = 𝑒 𝑛𝑏𝑦 always exists over fields of size β‰ˆ 𝑒 βˆ’ 1

  11. Coding with Constraints: Upper Bound Upper Bound (Halbawi-Thill- Hassibi’15, Song -Dau- Yuen’15) 𝑒 ≀ 𝑒 𝑛𝑏𝑦 = 1 + βˆ…β‰ π½βŠ† 1,…,𝑙 ( βˆͺ π‘—βˆˆπ½ 𝑆 𝑗 βˆ’ |𝐽|) min where 𝑆 𝑗 = {π‘˜: 𝑗 ∈ 𝐷 π‘˜ } Properties – 𝑒 𝑛𝑏𝑦 can be found in time poly(π‘œ) π‘œ – codes with 𝑒 = 𝑒 𝑛𝑏𝑦 always exists over fields of size β‰ˆ 𝑒 βˆ’ 1 Question of interest: how about fields of size poly(π‘œ) ?

  12. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14)

  13. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ )

  14. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern

  15. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros

  16. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros General Case (Halbawi-Thill- Hassibi’15 ): 𝑒 𝑛𝑏𝑦 ≀ π‘œ βˆ’ 𝑙 + 1

  17. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros General Case (Halbawi-Thill- Hassibi’15 ): 𝑒 𝑛𝑏𝑦 ≀ π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist if there are β‰₯ 𝑒 𝑛𝑏𝑦 βˆ’ 1 indices π‘˜ ’s where 𝐷 π‘˜ = 𝑙

  18. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros General Case (Halbawi-Thill- Hassibi’15 ): 𝑒 𝑛𝑏𝑦 ≀ π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist if there are β‰₯ 𝑒 𝑛𝑏𝑦 βˆ’ 1 indices π‘˜ ’s where 𝐷 π‘˜ = 𝑙 – Optimal systematic codes always exists (smaller bound 𝑒 𝑑𝑧𝑑 ≀ 𝑒 𝑛𝑏𝑦 )

  19. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros General Case (Halbawi-Thill- Hassibi’15 ): 𝑒 𝑛𝑏𝑦 ≀ π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist if there are β‰₯ 𝑒 𝑛𝑏𝑦 βˆ’ 1 indices π‘˜ ’s where 𝐷 π‘˜ = 𝑙 – Optimal systematic codes always exists (smaller bound 𝑒 𝑑𝑧𝑑 ≀ 𝑒 𝑛𝑏𝑦 ) Common Technique: Reed-Solomon (sub-) code

  20. Coding with Constraints: Review Common Technique: Reed-Solomon (sub-) code = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) ? ? 0 0 ? 𝑯 = ? 0 ? ? 0 0 ? 0 ? ?

  21. Coding with Constraints: Review Common Technique: Reed-Solomon (sub-) code = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) 𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 ? ? 0 0 ? 𝑯 = ? 0 ? ? 0 0 ? 0 ? ?

  22. Coding with Constraints: Review Common Technique: Reed-Solomon (sub-) code = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) 𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 𝑔 1 (𝛽 1 ) 𝑔 1 (𝛽 2 ) 0 0 𝑔 1 (𝛽 5 ) ? ? 0 0 ? 𝑔 2 (𝛽 1 ) 0 𝑔 2 (𝛽 3 ) 𝑔 2 (𝛽 4 ) 0 𝑯 = = ? 0 ? ? 0 0 ? 0 ? ? 0 𝑔 3 (𝛽 2 ) 0 𝑔 3 (𝛽 4 ) 𝑔 3 (𝛽 5 )

  23. Coding with Constraints: Review Common Technique: Reed-Solomon (sub-) code = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) 𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 𝑔 1 (𝛽 1 ) 𝑔 1 (𝛽 2 ) 0 0 𝑔 1 (𝛽 5 ) ? ? 0 0 ? 𝑔 2 (𝛽 1 ) 0 𝑔 2 (𝛽 3 ) 𝑔 2 (𝛽 4 ) 0 𝑯 = = ? 0 ? ? 0 0 ? 0 ? ? 0 𝑔 3 (𝛽 2 ) 0 𝑔 3 (𝛽 4 ) 𝑔 3 (𝛽 5 ) Difficulty: G may not be full rank

  24. Part II: Joint Design of Different MDS Codes (joint work with H. Kiah, W. Song, and C. Yuen)

  25. MDS Codes for Distributed Storage 𝑑 1 MDS: tolerate any π‘œ βˆ’ 𝑙 node failures 𝑑 2 𝑦 1 𝑦 2 π‘œ coded 𝑙 data Encoded symbols symbols 𝑦 𝑙 Facebook: Reed-Solomon π‘œ = 14, 𝑙 = 10 𝑑 π‘œ 25

  26. Question of Interest β€’ If two (or more) independent DSS share some common data, can we jointly design the corresponding MDS codes to get a better overall failure protection?

Recommend


More recommend