Di�ra tive p ro du tion of heavy mesons at the LHC Ma rta �usz zak Institut of Physi s Universit y of Rzesz� w 2-7 June 2016 MESON 2016, Krak � w, P oland Ma rta �usz zak Universit y of Rzeszo w
Plan of the talk Intro du tion b ¯ ¯ Di�ra tive p ro du tion of and b Hadronization of heavy qua rks Di�ra tive p ro du tion of op en ha rm and b ottom Di�ra tive ha rm p ro du tion within k -fa to rization app roa h t Con lusions Based on: M. �usz zak, R. Ma iu�a and A. Sz zurek, Phys. Rev. D 91 , 054024 (2015), a rXiv:1412.3132 M. �usz zak, R. Ma iu�a, A. Sz zurek and M. T rzebinski, a pap er in p repa ration Ma rta �usz zak Universit y of Rzeszo w
Intro du tion to di�ra tive physi s at hadron olliders Inelasti di�ra tive s atterings an b e lassi�ed into three di�erent sp e ies. non − diffractive ( ND ) single − diffractive ( SD ) double − diffractive ( DD ) central − diffractive ( CD ) Double Pomeron Exchange ( DPE ) IP IP IP IP Φ Φ Φ Φ η η η η Single-di�ra tion (SD) is the p ro ess initiated b y ex hange of p omeron b et w een intera ting p rotons, whereb y one p roton remains inta t and se ond p roton is destro y ed and p roton remnants app ea r in the dete to r. This b rok en p roton gives rise to a bun h of �nal pa rti les o r to a resonan e with the same quantum numb ers. On the side of survived p roton a rapidit y gap app ea rs, whi h sepa rate the p roton from remnants. Double-di�ra tion (DD) is simila rly initiated but here b oth p rotons do not survive the ollision. In this ase rapidit y gap is lo ated in the entral rapidit y region. Central-di�ra tion (CD) alled also Double-P omeron-Ex hange (DPE) is governed b y p omeron-p omeron intera tion. Here, b oth olliding p rotons remain inta t and some entral system of pa rti les, is p ro du ed. In these events t w o outgoing p rotons a re sepa rated from entral obje ts b y t w o rapidit y gaps. Ma rta �usz zak Universit y of Rzeszo w
Single- and entral-di�ra tive p ro du tion of heavy qua rks single- di�ra tive p ro du tion p ′ p ′ p 1 p 1 1 1 p 1 X p 1 X IP, IR IP, IR g q f (¯ q f ) Y Y Q Q ¯ ¯ Q Q g q f ( ¯ q f ) g ¯ q f ( q f ) Q Q ¯ ¯ Q Q Y Y g ¯ q f ( q f ) IP, IR IP, IR p 2 p 2 X X p 2 p ′ p 2 p ′ 2 2 entral- di�ra tive p ro du tion p ′ p ′ p 1 p 1 1 1 leading-o rder gluon-gluon fusion and IP, IR IP, IR Y 1 Y 1 qua rk-antiqua rk anihilation pa rtoni g q f (¯ q f ) Q Q subp ro esses a re tak en into ¯ ¯ Q q f ( q f ) ¯ Q g onsideration Y 2 Y 2 IP, IR IP, IR the extra o rre tions from subleading p ′ p ′ p 2 p 2 reggeon ex hanges a re expli itly 2 2 al ulated Ma rta �usz zak Universit y of Rzeszo w
Theo reti al framew o rk In this app roa h (Ingelman-S hlein mo del) one assumes that the P omeron has a w ell de�ned pa rtoni stru ture, and that the ha rd p ro ess tak es pla e in a P omeron�p roton o r p roton�P omeron (single di�ra tion) o r P omeron�P omeron ( entral di�ra tion) p ro esses. d σ 2 · SD ( 1 ) � = 1 2 × |M Q | D ( 1 , µ 2 ) g ( 2 , µ 2 ) gg → Q ¯ 16 π 2 ˆ x g x x x 1 2 2 dy dy dp s 1 2 t 2 · � �� + |M Q | D ( 1 , µ 2 ) x 2 ¯ q ( 2 , µ 2 ) + 1 ¯ D ( 1 , µ 2 ) q ( 2 , µ 2 ) , q → Q ¯ q ¯ x q x x x q x x x 1 2 d σ SD ( 2 ) � 2 · = 2 × |M Q | g ( 2 ) D ( 2 ) 1 1 , µ 2 , µ gg → Q ¯ 2 ˆ x x x g x 16 π 1 2 2 dy dy dp s 1 2 t 2 · � �� + |M Q | q ( 1 , µ 2 ) x 2 ¯ D ( 2 , µ 2 ) + 1 ¯ q ( 1 , µ 2 ) D ( 2 , µ 2 ) , q → Q ¯ q ¯ x x q x x x x q x 1 2 d σ � 2 · = 2 × |M Q | D ( 2 ) x D ( 2 ) 1 1 , µ 2 , µ CD gg → Q ¯ 2 ˆ x g x g x 16 π 1 2 2 dy dy dp s 1 2 t 2 · � � � + |M Q | D ( 1 , µ 2 ) x 2 ¯ D ( 2 , µ 2 ) + 1 ¯ D ( 1 , µ 2 ) D ( 2 , µ 2 ) , q → Q ¯ q ¯ x q x q x x q x x q x 1 2 standa rd ollinea r MSTW08LO pa rton distributions (A.D. Ma rtin, W.J. Stirling, R.S. Tho rne and G. W att) di�ra tive distribution fun tion (di�ra tive PDF) Ma rta �usz zak Universit y of Rzeszo w
Theo reti al framew o rk The di�ra tive distribution fun tion (di�ra tive PDF) an b e obtained b y a onvolution of P ( P ) the �ux of p omerons f x in the p roton and the pa rton distribution in the p omeron, e.g. I I P ( β, µ 2 ) g fo r gluons: I � � 1 D ( x , µ 2 ) = d β δ ( x − P β ) P ( β, µ 2 ) P ( P ) = dx P ( P ) P ( x , µ 2 ) . I P g dx x g f x f x g I P I I I I I I I x x x I P P I P ( P ) The �ux of P omerons f x : I I � t max P ( P ) = f ( P , t ) , f x dt x I I I t min min , with t t b eing kinemati b ounda ries. max P ( P , t ) Both p omeron �ux fa to rs f x as w ell as pa rton distributions in the p omeron w ere I I tak en from the H1 ollab o ration analysis of di�ra tive stru ture fun tion at HERA. Ma rta �usz zak Universit y of Rzeszo w
b ¯ ¯ Results fo r and b 6 6 10 10 → → p p p c c X (SD) s = 14 TeV p p p b b X (SD) s = 14 TeV 10 5 10 5 |y| < 8.0 |y| < 8.0 gg-fusion (solid) gg-fusion (solid) q q -annihilation (dashed) q q -annihilation (dashed) 4 4 (nb/GeV) 10 (nb/GeV) 10 3 3 10 10 2 2 10 10 10 10 t t /dp /dp I P I P 1 - g u l 1 - g u l o n o n σ I R - g σ I R l u o n - g u l d d o n 10 -1 10 -1 I P - q u a P I - µ r k µ q u a 2 = m 2 2 = m 2 r k 10 -2 10 -2 t IR-quark t IR-quark S = 0.05 S = 0.05 G G -3 -3 10 10 0 5 10 15 20 25 30 0 5 10 15 20 25 30 p (GeV) p (GeV) t t 4 4 10 10 → → p p p c c X (CD) p p p p b b X (CD) s = 14 TeV s = 14 TeV 10 3 |y| < 8.0 10 3 |y| < 8.0 (nb/GeV) (nb/GeV) 2 2 10 10 gg-fusion (solid) gg-fusion (solid) 10 10 q q -annihilation (dashed) q q -annihilation (dashed) 1 1 /dp t /dp t -1 -1 σ 10 σ 10 d d IP-IP IP-IP µ µ -2 2 = m 2 IP-IR and IR-IP -2 2 = m 2 IP-IR and IR-IP 10 10 t IP-IR and IR-IP t IP-IR and IR-IP IR-IR IP-IP IR-IR IP-IP IR-IR S = 0.05 S = 0.02 IR-IR G G 10 -3 10 -3 0 5 10 15 20 25 30 0 5 10 15 20 25 30 p (GeV) p (GeV) t t ( √ the multipli ative fa to rs a re app ro ximately S = 0.05 fo r single-di�ra tive p ro du tion G s = and S = 0.02 fo r entral-di�ra tive one fo r the nominal LHC energy 14 T e V) G Ma rta �usz zak Universit y of Rzeszo w
b ¯ ¯ Results fo r and b 10 5 10 5 → → p p p c c X (SD) s = 14 TeV p p p b b X (SD) s = 14 TeV 4 4 10 10 (nb/GeV) (nb/GeV) 10 3 10 3 IP-gluon (solid) IP-gluon (solid) IR-gluon (dashed) IR-gluon (dashed) 2 2 10 10 10 10 t t /dp /dp σ 1 x σ 1 x <0.1 <0.1 pom pom d d x x |y| < 8.0 pom <0.05 |y| < 8.0 pom <0.05 10 -1 µ x 10 -1 µ x 2 = m 2 <0.2 2 = m 2 <0.2 reg reg t t S = 0.05 S = 0.05 x x G < G < r e g 0 . 1 r e g 0 1 . -2 -2 10 10 0 5 10 15 20 25 30 0 5 10 15 20 25 30 p (GeV) p (GeV) t t 6 10 7 10 → → p p p c c X (SD) s = 14 TeV p p p b b X (SD) s = 14 TeV |y| < 8.0 |y| < 8.0 IP-gluon (solid) IP-gluon (solid) 6 IR-gluon (dashed) 5 IR-gluon (dashed) 10 10 IP/IR IP/IR /dx /dx 5 4 10 10 SD SD σ σ d d µ µ 2 = m 2 3 2 = m 2 10 4 10 t t S = 0.05 S = 0.05 G G 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3 x x IP/IR IP/IR in the ase of p omeron ex hange the upp er limit in the onvolution fo rmula is tak en to P < 0 . 1, R < 0 . 2) b e 0.1 and fo r reggeon ex hange 0.2 ( x x I I the whole Regge fo rmalism do es not apply ab ove these limits Ma rta �usz zak Universit y of Rzeszo w
Recommend
More recommend