development of the elmb development of the elmb
play

Development of the ELMB Development of the ELMB Henk Boterenbrood - PowerPoint PPT Presentation

Development of the ELMB Development of the ELMB Henk Boterenbrood LECC2003, Sep 29 - Oct 03 ELMB: Embedded Local Monitor Board Credit-card sized plug-on board programmable: microcontroller (8-bit, 4MHz) communication: CAN-interface


  1. Development of the ELMB Development of the ELMB Henk Boterenbrood LECC2003, Sep 29 - Oct 03

  2. ELMB: Embedded Local Monitor Board � Credit-card sized plug-on board � programmable: microcontroller (8-bit, 4MHz) � communication: CAN-interface � I/O � digital I/O � 64-channel 16-bit ADC (optional), max 30 samples/s � firmware remotely upgradeable � General-purpose CAN-bus based standard building block for various control and monitoring tasks in the LHC experiments (initially for ATLAS) 2 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  3. Why develop the ELMB ? � Reduce design effort (hardware, software) by individual institutes � Simplify spares and maintenance issues (15 years) � Common solution for interfacing custom designs in a ‘standard’ way to the Detector Control System (DCS) � hardware and software ( CANopen protocol on the CAN-bus) � No commercial solution to meet all requirements: � low power � low cost � high I/O density (connect many channels to one module) � In-Application-Programmable (i.e. ‘on-detector’, via CAN-bus) � not sensitive to magnetic field � radiation tolerant 3 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  4. Outline � ELMB status � ELMB overview � Some example applications � Radiation tests 4 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  5. ELMB: Status � After a few prototypes… � LMB ca. 40 produced � ELMB103 (with ATmega103 microcontroller) ca. 300 produced � Final design: ELMB128 (with ATmega128 microcontroller) � cheaper and more rad tolerant � ELMB128A : with analog part � ELMB128D : without analog part � Pre-series of 650 ELMB128 produced, end of 2002 � Final production of 9000 pieces in preparation � ATLAS: 5800 � LHC Rack & Gas Systems: 1800 � Other LHC experiments: 1400 5 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  6. ELMB128: Block Diagram VCP, VCG VAP, VAG VDP, VDG 6 to 12V, 20 mA 5.5 to 12V, 10 mA 3.5 V - 12V, 15 mA ANALOG GND DIGITAL GND DIGITAL GND CAN GND ANALOG GND CAN GND Voltage Voltage Voltage +5V ± 5V +3.3V Regulator Regulators Regulator 64 chan ATmega128L 4 Analog In SAE81C91 82C250 MUX + microcontroller OPTO OPTO …. CAN CAN controller CS5523 • 128k Flash …. Trans- • 4k RAM …. 16-bit OPTO ceiver OPTO • 4k EEPROM ADC • Bootloader DIP switches section 32 CAN bus 4 3 Dig I/O ISP, cable Digital I/O (SPI) USART 6 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  7. ELMB: ELMB103 vs. ELMB128 ELMB103 ELMB128 Brown-Out-Detection (BOD) circuit removed voltage regulator removed (for external use) microcontroller upgraded (self-programming, internal BOD) RTC crystal removed 2 nd microcontroller no longer needed jumpers obsolete ca. 40 mA ca. 55 mA current consumption (no activity) 7 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  8. ELMB128: Microcontroller � ATMEL ATmega128L, 3.3V � single clock cycle instructions (ELMB: 4 MHz) � 128k In-System-Programmable Flash (1000x write/erase) � 4k SRAM � 4k EEPROM (100,000x write/erase) � optional Boot Code section (2, 4 or 8 k) � In-System-Programming by on-chip Bootloader program � 4 timers � on-chip 10 bit 8-chan ADC � … … 8 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  9. ELMB128A: the board CAN-controller analog multiplexors opto-couplers CAN-transceiver on ELMB128D: backside empty… and frontside only 2 instead of 5 opto-ICs ADC motherboard connectors DIP-switches ISP/USART connector microcontroller 9 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  10. ELMB: Embedded… CANopen Temperature Connection ELMB (analog in) Magnetic Field to Detector Voltages, Currents Control Thresholds (analog out) System Application-Specific CAN ON/OFF monitor (digital in) Motherboard… with possibly ON/OFF (digital out) signal-conditioning I2C e.g. for Frontend circuitry, Electronics Configuration JTAG opto-isolation, ADCs, DACs, ……… EEPROM/flash, … or ELMB integrated in system connectors, etc… to monitor and control 10 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  11. ELMB: general-purpose Motherboard Digital I/O (ca. 300 produced) ELMB with general-purpose CANopen application firmware and Bootloader ( off production ) power CAN analog in analog in (+power) (2x16 ch) (2x16 ch) analog input signal adapters (available for PT100, NTC and voltages) 11 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  12. ELMB Application Example: Muon MDT NTC Temperature Sensors MDT-DCS module (10 to 20 per chamber, 30 max) ADC MDT Front-end Electronics (CSM) 16-bit SPI CAN CAN 5 4 CSM-ADC Analog inputs micro ADC JTAG (V, I, T, etc. 16-bit 64 channels) ELMB SPI- 3 AUX 5 7 DIG-I/O MDT/ various functions (tbd) 4 ATLAS n.c. DIG-I/O B-sensor 1 B-sensor 2 DCS 4 Magnetic JTAG: electronics configuration ADC ADC ID ID Field 24-bit 24-bit Sensors B x ,B y ,B z ,T B x ,B y ,B z ,T MDT Chamber (ca. 600 chambers equipped with (ca. 1200x) two B-sensor modules each) 12 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  13. ELMB Application Example: Muon MDT 13 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  14. ELMB Application Example: Muon RPC ELMB ELMB controls: � Temp sensors � TTC � Delay chips � FPGA � Flash prom FPGA � Flash prom SPI � I 2 C I/O registers � Coincidence matrix ASIC (about 200 I 2 C registers) � Optical link controls using JTAG and I 2 C protocols and Dig I/O (courtesy of S.Veneziano) PAD board with TTCrx, ELMB, XCV200 and Optical Link 14 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  15. ELMB Application Example: LHCb Muon 24A00 ELMB0 ELMB3 ELMB1 ELMB2 S/N Vers. 1010XXX SPI SPI SPI SPI pwr_ctrl pwr_ctrl pwr_ctrl pwr_ctrl (courtesy of V.Bocci) 4 MBit 4 MBit 4 MBit 4 MBit Flash Flash Flash Flash I2C_local_bus I2C I/O REG 0x21 I2C reset lines I/O REG 12 0x20 ELMB Actel 12 Test_pulse signals FPGA Service Board Module 0x72 (for frontend electronics: configuration, etc) 15 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  16. ELMB Radiation Tests � Radiation values guideline (calculated for ATLAS Muon Barrel) � TID: 4.7 Gy x 3.5 x 1 x 2 = 33 Gy = 3.3 kRad in 10 years x 5 x 1 x 2 = 3.0*10 11 n/cm 2 (1 MeV eq.) in 10 years NIEL: 3.0E10 n/cm 2 � x 5 x 1 x 2 = 5.4*10 10 h/cm 2 (>20 MeV) in 10 years SEE: 5.4E09 h/cm 2 � safety factor COTS mixed: factor 4, for simulated Low Dose Rate effect, COTS homogeneous in preselection: factor 2 rad levels factor 5: for COTS in COTS homogeneous in production: factor 1 non-homogeneous batches � NIEL (Non-Ionising Energy Loss) � reactor at ITN, Portugal, Feb 2003 � 3 ELMB128s unpowered, 2.0*10 12 n/cm 2 : OKAY � 3 ELMB128s unpowered, 8.0*10 12 n/cm 2 : had to replace two voltage regulators per ELMB, then OKAY � opto-couplers degraded: make sure to have margins in signal timing (by software) 16 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  17. ELMB Radiation Test: SEE / TID � CRC cyclotron, Louvain-la-Neuve (B), March 2003 (previous test with ELMB103 in 2001) � 12 ELMB128s, each irradiated with at least 1.0*10 11 p/cm 2 corresponding to TID = 140 Gy � Total fluence: 1.3*10 12 p/cm 2 (2001: fluence: 0.33*10 12 p/cm 2 ) � ELMBs powered, running � ‘standard’ firmware (doing ADC and digital I/O, CAN-bus message handling) � additional periodic (every 5 s) checking of unused parts of memory and device registers, filled with bit patterns 17 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  18. RadTest: TID (Total Ionising Dose) • Currents of Digital and CAN sections of ELMB128 were not affected • Reprogramming of Flash memory fails (needs further tests: when does it fail!) A013 A015 A017 A021 ELMB128 ANALOG CURRENT A022 A024 A062 A097 A481 A482 A483 A484 60 50 40 Current (mA) 30 20 10 0 0 25 50 75 100 125 150 175 200 225 250 275 TID (Gy) 18 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  19. RadTest: Systematic SEE in SRAM SEE in 2048 bytes of SRAM 2500 ELMB103 "old" ELMB 0.5 µm technology 2000 ELMB128 ELMB128 Total number of SEE 0.35 µm technology Slope: 3.6E-12 SEEs per 1500 byte and proton/cm 2 1000 Slope: 5.4E-13 SEEs per byte and proton/cm 2 500 0 0.0E+00 2.0E+11 4.0E+11 6.0E+11 8.0E+11 1.0E+12 1.2E+12 1.4E+12 Number of protons/cm 2 19 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  20. RadTest: SEE results � no hard or destructive SEE found � Systematic SEEs � count the errors found in bit patterns (corrected for total fluence ( 1.3*10 12 p/cm 2 ) and number of bytes in test) : SRAM EEPROM FLASH CAN ADC MEGA CRC ELMB103 7733 0 0 61 73 -- 0 ELMB128 1233 0 0 27 2 0 0 microcontroller different technology(?) in 0.35 µ m technology 0.50 µ m technology 20 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

  21. RadTest: SEE results � Functional SEEs � count ‘abnormal’ behaviour, and categorize according to necessary action to fix it ELMB103 ELMB128 Power cycling 15 0 Software reset 19 1 Automatic recovery 78 13 (corrected for total fluence of 1.3*10 12 p/cm 2 ) 21 LECC2003, Sep 29 - Oct 03 Boterenbrood & Hallgren

Recommend


More recommend