development of cpt based pile design for nebraska soils
play

Development of CPT Based Pile Design for Nebraska Soils September - PowerPoint PPT Presentation

Development of CPT Based Pile Design for Nebraska Soils September 18, 2019 Objectives Conduct literature review of existing CPT pile bearing capacity prediction methods LTRC study Compare NDOT CPT data with dynamic load test data


  1. Development of CPT Based Pile Design for Nebraska Soils September 18, 2019

  2. Objectives • Conduct literature review of existing CPT pile bearing capacity prediction methods • LTRC study • Compare NDOT CPT data with dynamic load test data from Pile Driving Analyzer • Large dataset • Evaluate CPT prediction methods • Nebraska soil conditions • Implement Nebraska specific end bearing/skin friction capacity factors • CPT-Pile Capacity Software • Advance existing use of CPT in Nebraska • Modernize design testing/design methods

  3. Background-CPT • Cone Penetration Test (CPT) • Conical tipped penetrometer advanced by cylindrical drill rod • Tip resistance ( q c ) • Sleeve friction ( f s ) Friction sleeve • Pore pressure ( u 2 ) • Continuous profile • 1” resolution • Current NDOT CPT application • Site characterization • MSE walls • Slope investigation • Shallow foundations Cone Porous element CPT diagram and cone sizes (Cabal & Robertson, 2010)

  4. CPT

  5. Literature Review • Survey of bearing capacity prediction applications • Louisiana DOT • Abu-Farsakh & Titi (1999) • Eight CPT bearing prediction methods evaluated • Aoki & De Alencar (1975) • Bustamante & Gianeselli (LCPC) (1982) • De Ruiter & Beringen (European) (1979) • Penpile (1978) • Philipponnat (1980) • Prince & Wardle (1982) • Schmertmann (1978) • Tumay & Fakhroo (1982)

  6. Aoki & De Alencar (1975) Pile type Fb Fs Bored 3.5 7.0 • End bearing Franki 2.5 5.0 q Steel 1.75 3.5 q = ca t F b Precast concrete 1.75 3.5 α s (%) Soil type Soil type α s (%) Soil type α s (%) q ca ~ 4D Sand 1.4 Sandy silt 2.2 Sandy clay 2.4 • Skin Friction Silty sand 2.0 Sandy silt with clay 2.8 Sandy clay with silt 2.8 α Silty sand with clay 2.4 Silt 3.0 Silty clay with sand 3.0 = f q cs F s Clayey sand with silt 2.8 Clayey silt with sand 3.0 Silty clay 4.0 Clayey sand 3.0 Clayey silt 3.4 Clay 6.0

  7. Bustamante & Gianeselli (1982) (LCPC method) Factors Nature of soil (MPa) Group I Group II • End bearing K Soft clay and mud <1 0.4 0.5 c q c Moderately compacted clay 1 to 5 0.35 0.45 = q K q Silt and loose sand < 5 0.4 0.5 p c ca Compacted to stiff clay and > 5 0.45 0.55 • Skin Friction compacted silt q Soft chalk < 5 0.2 0.3 = c f α Moderately compacted sand and LCPC 5 to 12 0.4 0.5 gravel Group I : plain bored piles; mud bored piles; micro piles (grouted under low Weathered to fragmented chalk > 5 0.2 0.4 pressure); cased bored piles; hollow auger bored piles; piers; barrettes. Group II : cast screwed piles; driven precast piles; prestressed tubular piles; Compacted to very compact sand and driven cast piles; jacked metal piles; micro piles (small diameter piles grouted > 12 0.3 0.4 under high pressure with diameter < 250 mm); driven grouted piles (low gravel pressure grouting); driven metal piles; driven rammed piles; jacket concrete piles; high pressure grouted piles of large diameter.

  8. LCPC method (1982) Category Category-IA: plain bored piles; mud f α Coefficients, Maximum limit of (MPa) bored piles; hollow auger bored piles; micropiles (grouted under low pressure); I II I II III cast screwed piles; piers; barrettes. q Category-IB: cased bored piles; driven c A B A B A B A B A B cast piles. (MPa) Nature of soil Category-IIA: driven precast piles; Soft clay and mud <5 30 90 90 30 0.015 0.015 0.015 0.015 0.035 prestressed tubular piles; jacket concrete piles. Moderately compact clay 1 to 5 40 80 40 80 0.035 0.035 0.035 0.035 0.08 > 0.12 (0.08) (0.08) (0.08) Category-IIB: driven metal piles; jacked Silt and loose sand < 5 60 150 60 120 0.035 0.035 0.035 0.035 0.08 - metal piles. Compact to stiff clay and compact silt > 5 60 120 60 120 0.035 0.035 0.035 0.035 0.08 > 0.20 Category-IIIA: driven grouted piles; (0.08) (0.08) (0.08) driven rammed piles. Soft chalk < 5 100 120 100 12 0.035 0.035 0.035 0.035 0.08 - Category-IIIB: high pressure grouted Moderately compact sand and gravel piles of large diameter >250 mm; 5 to 12 100 200 100 200 0.08 0.035 0.08 0.08 0.12 > 0.20 micropiles (grouted under high pressure). (0.12) (0.08) (0.12) Weathered to fragmented chalk > 5 60 80 60 80 0.12 0.08 0.12 0.12 0.15 > 0.20 (0.15) (0.12) (0.15) Compact to very compact sand and > 12 150 300 150 200 0.12 0.08 0.12 0.12 0.15 > 0.20 gravel (0.15) (0.12) (0.15)

  9. de Ruiter and Beringen (1979) (European method) Clayey Soils Sandy Soils • End Bearing • End Bearing • See Schmertmann method q = S = c q N S u p c u N k • N k = 15 to 20 (cone factor) • N c = 9 (bearing capacity factor) • Skin Friction • Skin Friction  f ( CPT ) s  q c ( compressio n )  = β f S 300 s u =  f min s q  c ( tension )  400 • β = 1 (NC soils), 0.5 (OC soils)  1 .2 TSF 

  10. Penpile (1978) • End Bearing • Clay = q 0 . 25 q p c • Sand = q 0 . 125 q p c q c = average of 3 cone tip resistances near pile tip • Skin Friction f = s f + 1 . 5 0 . 1 f s

  11. Philipponnat (1980) • End Bearing k Soil type b + q q q = ( A ) ( B ) Gravel 0.35 k q = q ca ca t b ca ca 2 Sand 0.40 Silt 0.45 • Clay 0.50 q ca & q cb are average cone tip resistances over the distance 3B (B = pile diameter) above and below the pile tip respectively B PILE TIP A 3B 3B B

  12. Philipponnat (1980) (cont) • Skin Friction F Soil type s Clay and calcareous clay 50 α s q = f Silt, sandy clay, and clayey sand 60 cs F s Loose sand 100 Medium dense sand 150 Dense sand and gravel 200 α s =1.25 for driven precast concrete pile

  13. Prince & Wardle (1982) • End Bearing q = k q p b c For driven piles, k b =.35 and k b =.30 for jacked piles • Skin Friction f = k s f s For driven piles, k s = .53, for jacked piles, k s = .62 and for bored piles, k s = .49

  14. Schmertmann (1978) • End Bearing + q q = ≤ c 1 c 2 q 15 MPa p 2 Procedure for calculation of qt by (Schmertmann) method

  15. Schmertmann (1978) • Skin Friction • Sandy Soils   8 D y L   = + F K f A ' f A '   s s s s s 8 D   = = y 0 y 8 D • Clayey soils = α F f A s c s s αc, Design curves for pile side friction in clay (Schmertmann 1978) K , Design curves for pile side friction in sand (after Nottingham 1975)

  16. Tumay & Fakhroo (1982) + • End Bearing q q q = + q c 1 c 2 a t 4 2 • Where q c1 = average q c values 4D below the pile tip, q c2 = average minimum q c values 4D below the pile tip, and q a = average minimum values ranging 8D above the pile tip. • Skin Friction f = mf sa F sa = f t − = + 9 f m 0 . 5 9 . 5 e sa L • Where F t = total CPT friction for the length of pile embedment and L = pile length.

  17. Project & Site Selection PN CN SN 34-6(133) 12425 C05501305P S034 31644 • 17 projects, 20 bridges S034 31644 77-2(1025) 11801 S077 09368 • 93 CPT – PDA comparisons 80-2(106) 51459B S080 08295L 80-9(865) 12492 S080 40436 180-9(519) 11347 S180 00205 77-3(128) 22265 S077 11185 75-2(167) 21849e S034 38219 81-2(1035) 42050A S081 08578 80-9(865) 12492 S080 40436 80-9(838) 12465 S080 41341 159-7(106) 12381a S159 01373 85-2(111) 22203 S085 0042 7066(43) 12785 C006602905 80-9(811) 21929 S080 43555 80-9(828) 12455 S080 42094 80-9(801) 21867 S080 44207 15-3(115) 32132 S015 13411 80-9(830) 12457 S080 41856

  18. Data Collection • Driven Pile • HP 10x42, HP12x53, HP14x89 • Steel pipe pile 12.75” O.D. • Square prestressed concrete 12” • CPT logs • Depth and soil type considerations • Bridge information • As-builts • Boring logs • Pile records

  19. Existing Pile Capacity • NDOT LRFD driving equation �� � = 4� � + .5 • S= pile set (in.), E= W*H (ft-kip), � = 0.7 resistance factor • PDA to CAPWAP • End and Skin bearing portions • Typically higher capacity than driving equation

  20. CPT Bearing Capacity Prediction • PN 77-2(1025) Skin Friction Capaciity Axial Pile Capacity End Bearing Capacity Q in [kips] Qs in [kips] Qp in [kips] 0.00 200.00 400.00 600.00 800.00 0.00 200.00 400.00 600.00 800.00 0.00 100.00 200.00 300.00 400.00 0 0 0 Penpile Philipponnat 10 10 10 Prince & Wardle LCPC 20 20 20 Aoki Schmertmann 30 30 30 European Depth in [ft] Depth in [ft] Tumay 40 40 40 Depth in [ft] 50 50 50 60 60 60 70 70 70 80 80 80 90 90 90

  21. Axial Pile Capacity Q in [kips] 0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 0 Penpile Philipponnat 10 Prince & Wardle CPT Bearing Capacity LCPC 20 Aoki Prediction- Total Schmertmann European 30 Axial Capacity Tumay Depth in [ft] 40 50 60 70 80 90

  22. End Bearing Capacity Qp in [kips] 0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 0 Penpile Philipponna t 10 Prince & Wardle LCPC Aoki CPT Bearing Capacity 20 Schmertma nn European Prediction- End Tumay 30 Bearing Capacity Depth in [ft] 40 50 60 70 80 90

Recommend


More recommend