development of a fully depleted back illumination sensor
play

Development of a Fully Depleted Back Illumination Sensor Based on - PowerPoint PPT Presentation

Hideaki Matsumura (Kyoto University) S. Nakashima, T. G. Tsuru, T. Tanaka, A. Takeda, Y. Arai, T. Miyoshi, R. Ichimiya, T. Imamura, T. Ohmoto, A. Iwata Development of a Fully Depleted Back Illumination Sensor Based on SOI CMOS Technology for


  1. Hideaki Matsumura (Kyoto University) S. Nakashima, T. G. Tsuru, T. Tanaka, A. Takeda, Y. Arai, T. Miyoshi, R. Ichimiya, T. Imamura, T. Ohmoto, A. Iwata Development of a Fully Depleted Back Illumination Sensor Based on SOI CMOS Technology for Future X-Ray Astronomy Satellites

  2. capable of high speed reaout observable < 10 µsec 2% FWHM@6 keV < 30 μm pixeldetector SOI pixel and low background Non X-ray background above 10 keV new imaging spectrometer Weak Points ~1 Mpix Suzaku XIS energy band resolution Poor time resolution of ~ sec Timing resolution Energy resolution positional 0.5 - 10 keV ~ sec 2% FWHM@6 keV ~ 20 μm CCD 45 mm = X-ray CCDs Standard Detector 0.5 - 40 keV Motivation in X-ray Astronomy “Our Goal” Cosmic-rays X-ray from field of view from outside (1 kHZ) Trigger driven readout (100 kHz) Active Shield Anti-coincidence - due to cosmic rays in satellite orbit 2

  3. Si sensor + CMOS readout circuit with trigger Monolithic pixel sensor by Silicon on Insulator (SOI) Tech Concept of X-ray SOIPIX X-ray SOIPIX (cross-section) Time X-ray V_sig CMOS layer Readout Readout Readout Readout ~5 µ m with Trigger with Trigger with Trigger with Trigger (low resistivity) Insulator 200 nm (SiO2) P+ one pixel Hole ≈ pitch Sensor layer ~ 30 µ m (high resistivity) Electron >100 µ m Si substrate Silicon On Insulator Back Bias (SOI) Technology (not to scale) 3

  4. Achievements Scope of This Work Achievements and Scope of This Work ‣ Trigger-driven readout of X-ray signals ‣ Thick depletion layer (500 µm) ‣ Readout noise ~ 60 e - ‣ Energy resolution 700 eV FWHM at 8 keV ‣ Spectroscopy with back illumination (BI) device ‣ Investigation of charge collection efficiency 4

  5. 2.4 mm 32 x 32 format 30.6 µm□ pixel size XRPIX1b-CZ-BI: Back illumination sensor Sensor layer: 100 µm Resistivity: 0.7 kΩcm XRPIX1b-FZ-FI: Front illumination sensor Sensor layer: 500 µm Resistivity: 7 kΩcm Prototype: XRPIX1b 5

  6. We used special readout method to reduce readout noise output signal Charge often spreads over several pixels sharing event Charge 2 pixel event 1 pixel event signal X-ray Signal level base level time 3 x 3 Pixel Readout Method 120 0 20 40 60 80 100 120 0 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 120

  7. > 30V 20 FWHM ⇒ dead layer = 9.3 µm Device: XRPIX1b-CZ-BI Back Bias: 85 V Temperature: - 50 ℃ Al_K α (1.48 keV) Cu_K α (8.04 keV) Quantum Efficiency at 1.48 keV = 30 % 0 40 FWHM 300 200 100 channel/counts 10 10 2 back bias [V] 10 10 2 fully depleted 420 eV 1 hit events spectrum 730 eV Cu K α (1.48 keV) Al K α (8.04 keV) BI Spectrum CMS Split1 Histgram s t 300 Counts n 3 10 u o c 250 200 2 10 150 100 50 10 2 10 10 0 0 10 20 30 40 50 60 70 80 Channel (ADU) 60 channel 7

  8. (1) Energy resolution at Al line (1.48 keV) BI: 730 eV FI (same device): 300 eV (2) Thick dead layer 9.3 µm >> our goal ~ 0.1 µm Issues on BI Device We consider that this degradation is due to imperfection backside process. Improvement of backside treatment is ongoing. 8

  9. Large tail components 80 25 30 35 40 0 20 40 60 counts / channel 10 100 120 140 (17.4 keV) Mo K α (8.04 keV) Cu K α event 20 5 event 140 Peak shift 0 20 40 60 80 100 120 0 0 20 40 60 80 100 120 140 15 2 pixel 1 pixel Device: XRPIX1b-FZ-FI counts / channel channel [ADU] Back Bias: 30 V Temperature: - 50 ℃ 1 pixel and 2 pixel events spectrum Spectral Shape Counts 140 120 100 80 60 40 20 0 0 20 40 60 80 100 120 140 Channel (ADU) Counts 40 35 30 25 20 15 10 5 0 0 20 40 60 80 100 120 140 Channel (ADU)

  10. Cu Center pixel pulse height / Sum Mo Sum of pulse height of 2 pixels [ADU] Spectral Shape 140 120 100 80 60 40 20 0 0.4 0.5 0.6 0.7 0.8 0.9 1

  11. event Previous Device 0 500 1000 1500 2000 shift No peak No tail (8.04 keV) Cu K α (17.4 keV) Mo K α counts / channel channel [ADU] 0 counts / channel 5 10 20 25 30 35 40 0 20 40 60 80 100 120 2500 1400 0 140 2 pixel event 1 pixel large BPW size small BPW size 0 20 40 60 80 100 120 0 1000 20 40 60 80 100 120 140 200 600 1200 1600 0 400 800 140 15 20 140 Cu K α channel [ADU] counts / channel event 2 pixel event 1 pixel XRPIX1b-FZ-FI Current Device XRPIX1-FZ-FI Mo K α (17.4 keV) 120 40 100 80 60 40 20 0 counts / channel 140 120 100 80 60 (8.04 keV) Comparison with Previous Device Counts Counts 140 2500 120 2000 100 80 1500 60 1000 40 500 20 0 0 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Channel (ADU) Channel (ADU) Counts Counts 1600 40 1400 35 1200 30 1000 25 800 20 600 15 400 10 5 200 0 0 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Channel (ADU) Channel (ADU)

  12. 20.9 µm Buried P-Well (BPW): Suppression of backgate effect Previous Device XRPIX1-FZ-FI Current Device XRPIX1b-FZ-FI BPW 30.6 µm 14.0 µm Our Hypothesis of Charge Loss A part of signal charge is lost at the interface region between the insulator and the sensor layer ⇒ We plan to test the hypothesis by irradiating the device with a pencil X-ray beam

  13. interface region between the insulator and the sensor Back Illumination SOIPIX for the first time. layer. experiment. Summary ‣ We successfully obtained spectrum of Al lines using ‣ Energy resolution is 730 eV for Al line (1.48 keV). ‣ We think that a part of signal charge is lost at the ‣ We can test our hypothesis with a pencil beam 13

  14. Thank You 14

Recommend


More recommend