12 20 2017
play

12/20/2017 Lectures on Signals & systems Engineering Designed - PDF document

12/20/2017 Lectures on Signals & systems Engineering Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng. Al-Azhar University Email : eaymanelshenawy@yahoo.com Chapter 9 Laplace Transform Applications


  1. 12/20/2017 Lectures on Signals & systems Engineering Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng. Al-Azhar University Email : eaymanelshenawy@yahoo.com Chapter 9 Laplace Transform Applications 2 Chapter 9 The Laplace Transform Chapter 9 The Laplace Transform 𝒚 𝒖 = 𝒇 −𝒃𝒖 𝒗 𝒖 , 𝒃 > 𝟏, 𝒃 ∈ 𝑺 +∞ 𝒀 𝑻 = 𝒚 𝒖 𝒇 −𝒕𝒖 𝒆𝒖 −∞ +∞ +∞ 𝒇 −𝒃𝒖 𝒇 −𝒕𝒖 𝒆𝒖 𝒇 −𝒃𝒖 𝒗 𝒖 𝒇 −𝒕𝒖 𝒆𝒖 = = −∞ 𝟏 +∞ 𝒇 −(𝒕+𝒃)𝒖 𝒆𝒖 = −𝟐 𝒕 + 𝒃 𝒇 − 𝒕+𝒃 ∗∞ − 𝒇 − 𝒕+𝒃 ∗𝟏 = 𝟏 = −𝟐 𝟐 𝒕 + 𝒃 𝟏 − 𝟐 = 𝒕 + 𝒃 , 𝑺𝒇 𝒕 > −𝒃 1

  2. 12/20/2017 Chapter 9 The Laplace Transform Chapter 9 The Laplace Transform 𝒚 𝒖 = 𝒇 −𝒃𝒖 𝒗 −𝒖 , 𝒃 > 𝟏 +∞ 𝒚 𝒖 𝒇 −𝒕𝒖 𝒆𝒖 𝒀 𝑻 = −∞ +∞ 𝒇 −𝒃𝒖 𝒗 −𝒖 𝒇 −𝒕𝒖 𝒆𝒖 = −∞ 𝟏 𝟏 𝒇 −𝒃𝒖 𝒇 −𝒕𝒖 𝒆𝒖 = 𝒇 −(𝒕+𝒃)𝒖 𝒆𝒖 = −∞ −∞ = −𝟐 𝒕 + 𝒃 𝒇 − 𝒕+𝒃 ∗𝟏 − 𝒇 − 𝒕+𝒃 ∗−∞ = −𝟐 𝒕 + 𝒃 𝟐 − 𝟏 = −𝟐 𝒕 + 𝒃 , 𝑺𝒇 𝒕 < −𝒃 Chapter 9 The Laplace Transform Chapter 9 The Laplace Transform 2

  3. 12/20/2017 Zeroes and Poles of rational Laplace transform Zeroes and Poles of rational Laplace transform 𝑶(𝒕 ) 𝒀 𝒕 = 𝑬(𝒕 ) Zeroes of the Laplace transform  N(s) = 0 If 𝒜 𝟐 is a zero, then 𝐘 𝒜 𝟐 = 𝟏 Poles of the Laplace transform  D(s) = 0 𝒒 𝟐 = 𝟏 then 𝐘 𝒒 𝟐 = ∞ Region of Convergence ROC Region of Convergence ROC 3

  4. 12/20/2017 Region of Convergence ROC Chapter 9 The Laplace Transform Basic Laplace Pairs     Poles ROC x t X s        t 1 none Re s 1       s 0 u t Re s 0 s 1      u    0 t s Re s 0 s 1        s a   e at Re u t s a s  a 1            e at s a u t Re s a s  a 14 Chapter 9 The Laplace Transform Chapter 9 The Laplace Transform  j   Example 9.13     L    1 Re s 1. t   1      X s Re s 1  1   s 1 1   1   0   L  2. u t Re s s  j   1      X s Re s 1      0 2     1  s 1 s 2     L u t Re s  s   2 1       1    X s X s X s   1      L 1 2  3. at    e u t s 2 Re s a j  s a     Re s 2   1    at    L   e u t    Re s a 2        s a 2 t x t e u t 15 16 4

  5. 12/20/2017 Chapter 9 The Laplace Transform Chapter 9 The Laplace Transform § 9.5.2 Time Shifting § 9.5.3 Shifting in s-Domain          L  Roc   L  Roc  x t X s R x t X s R                 s t L    Roc  x t e X s s Roc R Re s L st 0 x t t X s e 0 R 0 0 0 ROC  Example   j  j j          x t t kT 2 j  k 0   T  r   r   r    1 1 2 r  Re s   Re s X s 2 0 1 0 e   sT 1 2  j               r Re s r r Re s Re s r Re s T 1 2 1 0 2 0   s  Re 0 pole-zero plot 17 18 Convolution Property Chapter 9 The Laplace Transform § 9.5.6 Convolution Property       L Roc  x t X s R 1 1 1     Roc    L R x t X s 2 2 2            L  x t x t X s X s  Roc R R 1 2 1 2 1 2    s 1      X s Re s 2  1 s 2    s 2      X s Re s 1 2  s 1           1          x t x t t X s X s Re s 1 2 1 2 19 5

  6. 12/20/2017 Chapter 9 The Laplace Transform Chapter 9 The Laplace Transform § 9.5.7 Differentiation in the Time Domain                   Example 2 t 3 t x t e u t x t e u t x t x t ? 1 2 1 2     Roc   L  R x t X s   dx t    L  Roc  sX s R dt         1 1      2 3 t t x t x t e u t e u t   Example x t 1 2 5 5 1    Determine X s t 0 2 4 6 8     2 1 2 s s       e e      X s X s X s Re s 0    1 2  2 2 s s 1 e 21 22 Chapter 9 The Laplace Transform Chapter 9 The Laplace Transform § 9.5.8 Differentiation in the s-Domain § 9.7 Analysis and Characterization of LTI Systems Using the Laplace Transform      L  Roc  x t X s R             dX s   y t x t h t    Roc  L   tx t R   y t h t ds x t              Y s X s H s H s Y s   1 X s      at L   te u t   Re s a  2 s a   H s —— System Function or Transfer Function 1   1      2 at L   t e u t   Re s a  3 2 s a 23 24 6

  7. 12/20/2017 Causality of LTI Stability of LTI 7

  8. 12/20/2017 Chapter 9 The Laplace Transform Transfer Function of the system  j  § 9.7.3 LTI Systems Characterized by Linear Constant-Coefficient Differential Equations   s 1  H s      s 1 s 2 M   k       b s     N k M k k  d y t  d x t   Y s       a Re s 2 k 0 1 2 a b H s   ROC k k k k N dt dt X s    k k 0 k 0 a s  k Causal , unstable system j  k 0        b - 1 Re s 2   dy t       3  1 2 y t x t dt noncausal , stable system      j   c Re s 1  anticausal , unstable system  1 2 29 30 Chapter 9 The Laplace Transform Chapter 9 The Laplace Transform     x t y t Example Consider a causal LTI system whose input and output related through an linear constant-coefficient differential equation of the form              y t 3 y t 2 y t x t Determine the unit step response of the system.     1 1     1 / LC      t 2 t    s t e e u t H s     2 2   2 s R / L s 1 / LC 31 32 8

Recommend


More recommend