deep into the amplituhedron
play

Deep into the Amplituhedron Jaroslav Trnka Center for Quantum - PowerPoint PPT Presentation

Deep into the Amplituhedron Jaroslav Trnka Center for Quantum Mathematics and Physics (QMAP), University of California, Davis, USA work with Nima Arkani-Hamed, Hugh Thomas, Cameron Langer, Akshay Yelleshpur Srikant, Enrico Herrmann, Minshan


  1. Deep into the Amplituhedron Jaroslav Trnka Center for Quantum Mathematics and Physics (QMAP), University of California, Davis, USA work with Nima Arkani-Hamed, Hugh Thomas, Cameron Langer, Akshay Yelleshpur Srikant, Enrico Herrmann, Minshan Zheng, Ryota Kojima KEK Theory Workshop, December 2019

  2. How to define/calculate the perturbative S-matrix in QFT?

  3. How to define/calculate the perturbative S-matrix in QFT?

  4. New picture? In this talk: 2 1 3 6 7 5 4 Positive geometry

  5. Motivation ✤ New efficient methods to calculate S-matrix, understand details of perturbation theory: analytic behavior, function space ✤ New picture for the S-matrix Standard: local evolution in spacetime Search for alternative point of view: get the same result from other principles New approach to deal with quantum gravity

  6. Unexpected simplicity ✤ Practical need for new understanding: simplicity in scattering amplitudes invisible in Feynman diagrams ✤ Famous example: 2->4 gluon amplitudes in QCD 120 Feyman diagrams ( k 1 · k 4 )( ✏ 2 · k 1 )( ✏ 1 · ✏ 3 )( ✏ 4 · ✏ 5 ) 100 pages

  7. Unexpected simplicity ✤ Practical need for new understanding: simplicity in scattering amplitudes invisible in Feynman diagrams ✤ Famous example: 2->4 gluon amplitudes in QCD (Parke, Taylor 1985) M 6 (1 − 2 − 3 + 4 + 5 + 6 + ) Helicity amplitude Tr( T a 1 T a 2 . . . T a 6 ) A 6 (123456) X Color ordering M 6 = Maximal-helicity h 12 i 4 A 6 = ( MHV ) violating h 12 ih 23 ih 34 ih 45 ih 56 ih 61 i amplitude

  8. Modern methods ✤ Very rich playground of ideas Use of physical constraints: unitarity methods, recursion relations Calculating loop integrals, study mathematical functions, symbols Symmetries of N=4 SYM, UV of N=8 SUGRA, string amplitudes ✤ Connection between amplitudes and geometry Canonical example is the geometry of worldsheet Fascinating development of recent years: write QFT amplitudes on worldsheet - CHY formula (Cachazo, He, Yuan 2013) 0 1 Z dz 1 . . . dz n s ab @X A I n A n = Vol[ SL (2 , C )] δ z a − z b b 6 = a

  9. Positive geometry ✤ Geometric space defined using a set of inequalities F k ( x i ) ≥ 0 polynomials parametrize kinematics ✤ Define the differential form on this space Ω ( x i ) Special form: logarithmic singularities on the boundaries Ω ( x i ) ∼ dx i near boundary x i = 0 x i

  10. Simple examples ✤ Example: 1d interval F 1 ( x ) = x − x 1 > 0 F ( x ) = x > 0 F 2 ( x ) = x 2 − x > 0 x = 0 x = x 1 x = x 2 x = ∞ form: Ω = dx normalization: singularities are unit x ≡ dlog x ✓ x − x 1 ◆ dx ( x 1 − x 2 ) Ω = ( x − x 1 )( x − x 2 ) = dlog x − x 2

  11. Simple examples ✤ Example: 2d region x > 0 y > 0 x > 0 y > 0 1 − x − y > 0 x = (0 , ∞ ) y = (0 , ∞ ) x = (0 , 1 − y ) y = (0 , ∞ ) Ω = dx dy ( y − 1) dx y = ( y − 1) dx dy x ( x + y − 1) ∧ dy Ω = x y xy ( x + y − 1) ✤ General positive geometry: more than just boundaries

  12. Positive Grassmannian ✤ Consider space of (2x4) matrices modulo GL(2) Grassmannian ✓ ◆ G (2 , 4) a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 describes a line in P 3 ✤ Positive Grassmannian G + (2 , 4) ( ij ) > 0 not all of them are boundaries All (2x2) minors

  13. Positive Grassmannian ✤ Consider space of (2x4) matrices modulo GL(2) Grassmannian ✓ ◆ G (2 , 4) a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 describes a line in P 3 ✤ Positive Grassmannian G + (2 , 4) ( ij ) > 0 not all of them are boundaries All (2x2) minors Shouten identity (13)(24) = (12)(34) + (14)(23) ( product positive all positive (13) , (24) > 0 (13) , (24) < 0

  14. Positive Grassmannian ✤ Positive Grassmannian G + (2 , 4) Fix GL(2): choose ✓ ◆ 1 0 x − y x, y, z, w > 0 parametrization 0 1 w z ✤ Boundaries: (12) , (23) , (34) , (14) = 0 ✤ Logarithmic form: d 2 × 4 C 1 Ω = dx dy dz dw w = vol[ GL (2)] (12)(23)(34)(14) x y z

  15. Positive geometry for amplitudes ✤ Amplituhedron: planar N=4 SYM (Arkani-Hamed, JT) (Arkani-Hamed, Thomas, JT) Tree-level and all-loop integrand ✤ Associahedron: biadjoint scalar at tree-level (Arkani-Hamed, Bai, He, Yan) Connection to CHY, recent work on 1-loop talk by Song He ✤ More: cosmological polytopes, CFT, EFT (Arkani-Hamed, Benincasa, Huang, Shao) ✤ Gravituhedron: tree-level GR??? (JT, in progress) Note: at the moment, no work on the final (integrated) loop amplitudes space of functions is too complicated beyond 1-loop

  16. Amplituhedron (Arkani-Hamed, JT 2013) (Arkani-Hamed, Thomas, JT 2017)

  17. Amplitudes in planar N=4 SYM ✤ Large N limit: only planar diagrams, cyclic ordering ✤ superfield: ⌘ A e ⌘ B e ⌘ C e ⌘ D G − N = 4 Φ = G + + e ⌘ A Γ A + · · · + ✏ ABCD e n − 2 Component amplitudes ✤ Superamplitudes: X A n = A n,k η 4 k with power ˜ k =2 Contains A n ( − − · · · − + + · · · +) ( ✤ Tree-level + loop integrand k conformal invariant ( Yangian broken after integration dual conformal invariant PSU(2,2|4) due to IR divergencies

  18. Amplitudes as volumes of polytopes ✤ The simplest example is the 6pt NMHV amplitude pioneered by Andrew Hodges in 2009 Z A 6 = dV 3d projection P Volume in dual 2 momentum twistor space Later found this is equal to logarithmic form on the “cyclic polytope” in P 4 (Arkani-Hamed, Bourjaily, Cachazo, Hodges, JT 2010)

  19. T riangulation (Hodges 2009) ✤ Calculation: triangulation in terms of elementary building blocks Divide into two simplices by cutting the polyhedron with (1235) plane 2 The first only depends on (12345) and second on (12356) A 6 = [12345] + [12356] each simplex is associated with “R-invariant” this correctly reproduces amplitude

  20. From kinematics to geometry (Arkani-Hamed, Thomas, JT 2017) ✤ Change of kinematics: p i , ✏ j → Z k ∈ P 3 k = 1 , 2 , . . . , n points in projective space A n,k, ` ` j → ( Z A Z B ) j ∈ P 3 lines in projective space positive geometry in P 3+ k Definition of the Amplituhedron projection Form with logarithmic kinematical space singularities on the boundaries P 3 = amplitude

  21. Back to 6pt NMHV amplitude ✤ Definition of the space: (5x5) determinants convex hall of points h Z 1 Z 2 Z 3 Z 4 Z 5 i , h Z 1 Z 2 Z 3 Z 4 Z 6 i , · · · > 0 Y : P 4 → P 3 projection: positive geometry in h z i z i +1 z j z j +1 i > 0 such that P 4 convex Z j projection these are boundaries ∼ ( p i +1 + p i +2 + . . . p j ) 2 kinematical space In this case (boundaries)>0 P 3 completely specifies the z j projection, hence the space in P 3

  22. Back to 6pt NMHV amplitude ✤ Triangulation -> differential form -> amplitude Ω 6 = [12345] + [12356] two simplicies project to P 3 change variables: x i → z k Ω = dx 1 dx 2 dx 3 dx 4 Logarithmic form: x 1 x 2 x 3 x 4 [12345] = ( h 1234 i dz 5 + h 2345 i dz 1 + h 3451 i dz 2 + h 4512 i dz 3 + h 5123 i dz 4 ) 4 h 1234 ih 2345 ih 3451 ih 4512 ih 5123 i [12356] = ( h 1235 i dz 6 + h 2356 i dz 1 + h 3561 i dz 2 + h 5612 i dz 3 + h 6123 i dz 5 ) 4 h 1235 ih 2356 ih 3561 ih 5612 ih 6123 i where h 1234 i ⌘ h z 1 z 2 z 3 z 4 i

  23. Back to 6pt NMHV amplitude ✤ Triangulation -> differential form -> amplitude A 6 = [12345] + [12356] two simplicies project to P 3 Differential form Replace: Superfunction dz j → η j [12345] = ( h 1234 i η 5 + h 2345 i η 1 + h 3451 i η 2 + h 4512 i η 3 + h 5123 i η 4 ) 4 h 1234 ih 2345 ih 3451 ih 4512 ih 5123 i [12356] = ( h 1235 i η 6 + h 2356 i η 1 + h 3561 i η 2 + h 5612 i η 3 + h 6123 i η 5 ) 4 h 1235 ih 2356 ih 3561 ih 5612 ih 6123 i where h 1234 i ⌘ h z 1 z 2 z 3 z 4 i

  24. TECHNICAL SLIDE Definition of Amplituhedron (Arkani-Hamed, Thomas, JT 2017) ✤ Constraints on positive geometry and the projection h Z a 1 Z a 2 Z a 3 . . . Z a k +3 i > 0 convex hall where h . . . i is (k+3)x(k+3) determinant positive geometry in Y Z a → z a P 3+ k − ∈ ∈ P k +3 P 3 projection h z i z i +1 z j z j +1 i > 0 { h 1234 i , h 1235 i , . . . , h 123 n i } has k sign flips kinematical space P 3 analogue of (13)>0 for G + (2 , 4)

  25. TECHNICAL SLIDE Definition of Amplituhedron (Arkani-Hamed, Thomas, JT 2017) ✤ Tree-level A n,k, ` =0 h Z a 1 Z a 2 Z a 3 . . . Z a k +3 i > 0 h z i z i +1 z j z j +1 i > 0 { h 1234 i , h 1235 i , . . . , h 123 n i } has k sign flips form 4 k Ω n,k ( z j ) → A n,k ( z j , e η j ) tree-level amplitude ✤ Loop integrand A n,k, ` for each line (loop momentum): h ( AB ) j z i z i +1 i > 0 { h ( AB ) j 12 i , h ( AB ) j 13 i , . . . h ( AB ) j 1 n i } has (k+2) sign flips for each pair of lines: h ( AB ) j ( AB ) k i > 0 Ω n,k, ` ( z j , ( AB ) k ) → I n,k, ` ( z j , e η j , ( AB ) k ) 4 k + 4 ` form loop integrand

  26. From geometry to amplitudes ✤ Amplituhedron: space of points and lines in projective space triangulate the space into “simplices” = elementary regions for which the form is trivial dlog form Ω = dx 1 dx 2 . . . dx 4 k +4 ` x k = f ( z i , ( AB ) j ) where x 1 x 2 x 4 k +4 ` ✤ Turn the physics problem of particle interactions, Feynman diagrams to a math problem of triangulations ✤ All the physics properties of scattering amplitudes are consequences of positivity geometry of Amplituhedron

  27. Exploring Amplituhedron (Arkani-Hamed, JT 2013) (Arkani-Hamed, Thomas, JT 2017) (Arkani-Hamed, Langer, Yelleshpur Srikant, JT 2018) (Rao 2017,2018) (Kojima 2018) (Langer, Kojima to appear) (Herrmann, Langer, Zheng, JT, to appear)

Recommend


More recommend