deconvolution of overlapping time series an fmri
play

Deconvolution of Overlapping Time Series: an fMRI Perspective - PowerPoint PPT Presentation

Deconvolution of Overlapping Time Series: an fMRI Perspective Indrayana Rustandi indra+@cs.cmu.edu Before we begin Feel free to interrupt with comments or questions. If you are lost, let me know. Comments on how this talk in general or


  1. Deconvolution of Overlapping Time Series: an fMRI Perspective Indrayana Rustandi indra+@cs.cmu.edu

  2. Before we begin • Feel free to interrupt with comments or questions. If you are lost, let me know. • Comments on how this talk in general or parts of it can be improved are appreciated.

  3. Overlapping Time Series 120 120 100 100 80 80 + 60 60 40 40 20 20 0 0 0 5 10 15 20 25 0 5 10 15 20 25 = 300 200 100 0 − 100 − 200 0 5 10 15 20 25

  4. Simple linear regression review Y i = β 0 + β 1 x i + � i x i , Y i • Known/observed: • Unknown ( want to estimate ) : β 0 , β 1 � i ∼ N (0 , σ 2 )

  5. Simple linear regression, least - squares solution Squared error: n � ( y i − ( β 0 + β 1 x i )) 2 E = i =1 Minimizing the squared error: ∂ E ∂ E = 0 = 0 ∂β 0 ∂β 1 Least - squares estimators: � n i =1 x i y i − n ¯ x n ¯ y n ˆ ˆ y n − ˆ β 1 = β 0 = ¯ β 1 ¯ x n � n i =1 x 2 x 2 i − n ¯ n

  6. Simple linear regression, maximum - likelihood solution � � n L ∝ 1 − 1 � ( y i − ( β 0 + β 1 x i )) 2 σ exp 2 σ 2 i =1 n 1 � ( y i − ( β 0 + β 1 x i )) 2 � ∝ − n log σ − 2 σ 2 i =1 The maximum - likelihood estimators are the least - squares estimators.

  7. Ordinary least - squares y = Xh + u • Known/observed: output y , design matrix X • W ant to estimate h u ∼ N ( 0 , σ 2 I )

  8. More about the design matrix X • Row: time point in the time series • Column: parameter of the time series • Binary elements ( 0 and 1 ) Example:   1 0 0 0 0 0 0 1 0 1 0 0     0 0 1 0 1 0   0 0 0 0 0 1

  9. Ordinary least - squares, least - squares solution Squared error: E = ( y − Xh ) T ( y − Xh ) = y T y − 2 y T Xh + h T X T Xh Minimizing the squared error: ∂ E ∂ h = 0 X T Xh = X T y Least - squares estimator: ˆ h = ( X T X ) − 1 X T y

  10. Ordinary least - squares, maximum - likelihood solution ( y − Xh ) T ( y − Xh ) 1 � − 1 � L = (2 πσ 2 ) n/ 2 exp 2 σ 2 ( y − Xh ) T ( y − Xh ) 2 log σ 2 − 1 � = − n 2 log 2 π − n 2 σ 2 The maximum - likelihood estimators are the least - squares estimators.

  11. Generalized least - squares y = Xh + u u ∼ N ( 0 , σ 2 Σ ) • • Otherwise similar to OLS

  12. Generalized least - squares, continued Σ Because u is Gaussian, is positive de fi nite, there exists a nonsingular matrix L such that Σ − 1 = L T L T ransform u using L : u = Lu ˜ E ( ˜ u ) = 0 u ) = σ 2 I V ( ˜ Hence, we can apply OLS to solve Ly = LXh + Lu

  13. Generalized least - squares, continued Let ˜ y ≡ Ly ˜ X ≡ LX u ≡ Lu ˜ Solve y = ˜ ˜ Xh + ˜ u using OLS GLS estimator: X T ˜ X ) − 1 ˜ h = ( ˜ ˆ X˜ y = ( X T Σ − 1 X ) − 1 X T Σ − 1 y Can also be veri fi ed that this is the maximum - likelihood estimator ( see [ Hamilton 1994 ])

  14. Estimating the covariance matrix In fMRI time series, the covariance matrix is unknown. The AR ( 1 ) model closely matches data in fMRI time series [ Purdon, W eissko ff 1998 ] : � t ∼ N (0 , σ 2 ) | ρ | < 1 u t = ρ u t − 1 + � t ρ 2 ρ n − 1   1 ρ · · · ρ n − 2 1 ρ ρ · · ·     . . . . Σ = . . . .   . . . . · · ·     . . ρ n − 1 ρ n − 2 ρ n − 3 . 1

  15. Estimating the covariance matrix, continued �   1 − ρ 2 0 0 0 0 · · · 1 0 0 0 − ρ   · · ·   0 1 0 0 − ρ L =   · · ·   . . . . . . . . . .   . . . . .   · · · 0 0 0 1 − ρ · · · Use L to transform the model with � n i =2 ˆ u i ˆ u i − 1 u = y − Xˆ ˆ h OLS ρ = ˆ 2 � i =1 ˆ u i

  16. Summary of algorithm • Do an OLS regression on y = Xh + u to obtain residuals . u ˆ ˆ • Calculate from . u ˆ ρ • Use to create L . T ˆ ransform the original ρ regression model y = Xh + u using L . • Do an OLS regression on the transformed model, ˆ h giving .

  17. Parameters in fMRI experiments • Controllable: can be controlled by the experiments • Uncontrollable

  18. Controllable parameters • sampling rate ( TR ) • interstimulus interval ( ISI ) • number of stimuli • stimulus duration

  19. Uncontrollable parameters • duration of the hemodynamic response function • signal - to - noise ratio

  20. Synthetic data • Look at the distance of the estimate to the true function, using mean - squared error of the sampled points as the metric. • V ary the controllable parameters, except for stimulus duration.

  21. Synthetic data, continued T rue response function: Birn impulse [ Birn et.al. 2002 ] � � t h ( t ) = At 8 . 60 exp − 0 . 547 Use A = 1 . 0 Defaults: sampling = 1, ISI = 9, number of stimuli = 10, sigma = 100 ( signal - to - noise ratio = 1.10 ) Run 100 times to get the distribution.

  22. OLS, sampling 4 2 x 10 1.5 MSE 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 sampling 2500 2000 1500 MSE 1000 500 0 0 0.5 1 1.5 2 2.5 3 3.5 sampling

  23. OLS, sampling jitter vs. non - jitter 4 2 x 10 1.5 MSE 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 sampling

  24. OLS, ISI 4 3 x 10 2.5 2 MSE 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 ISI

  25. OLS, number of stimuli 14000 12000 10000 MSE 8000 6000 4000 2000 0 20 40 60 80 100 120 no of events 2000 1500 MSE 1000 500 0 0 20 40 60 80 100 120 no of events

  26. OLS, number of stimuli jitter vs. non - jitter 14000 12000 10000 8000 MSE 6000 4000 2000 0 0 20 40 60 80 100 120 no of events

  27. GLS, sampling 4 2 x 10 1.5 MSE 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 sampling 3000 2500 2000 MSE 1500 1000 500 0 0 0.5 1 1.5 2 2.5 3 3.5 sampling

  28. GLS, sampling jitter vs. non - jitter 4 2 x 10 1.5 MSE 1 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 sampling

  29. GLS, ISI 4 3 x 10 2.5 2 MSE 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 ISI

  30. GLS, number of stimuli 16000 14000 12000 10000 MSE 8000 6000 4000 2000 0 20 40 60 80 100 120 no of events 2000 1500 MSE 1000 500 0 0 20 40 60 80 100 120 no of events

  31. GLS, number of stimuli jitter vs. non - jitter 16000 14000 12000 10000 MSE 8000 6000 4000 2000 0 0 20 40 60 80 100 120 no of events

  32. Brainlex 0.5 0.5 0 0 − 0.5 − 0.5 5 10 15 5 10 15 0.5 0.5 0 0 − 0.5 − 0.5 5 10 15 5 10 15 0.5 0.5 0 0 − 0.5 − 0.5 5 10 15 5 10 15

  33. Issues • Frequency domain • Jitter window • Other distance metrics • Analytical expression of the distance with respect to the parameters • Events not totally synchronized with sampling • Spatiotemporal regression • Hidden process model, stochastic design matrix

  34. Thank Y ou! Questions?

Recommend


More recommend