data processing and matrix description of monitoring
play

DATA PROCESSING AND MATRIX DESCRIPTION OF MONITORING RESULTS FOR - PowerPoint PPT Presentation

DATA PROCESSING AND MATRIX DESCRIPTION OF MONITORING RESULTS FOR ASSESSMENT OF NATURAL AND CLIMATIC CHANGES Shishlov V.I. Institute for Monitoring Climatic and Ecological Systems SB RAS, E-mail: shishlov@imces.ru The spatial organization of


  1. DATA PROCESSING AND MATRIX DESCRIPTION OF MONITORING RESULTS FOR ASSESSMENT OF NATURAL AND CLIMATIC CHANGES Shishlov V.I. Institute for Monitoring Climatic and Ecological Systems SB RAS, E-mail: shishlov@imces.ru

  2. The spatial organization of the climate system

  3. Global factors and mechanisms of climatic changes • The planetary mechanism of redistribution of energy and direction of movement of air weights at interactions AAC and the connected transformations thermal and baric fields. • A mechanism of change of energy conversion and energy-mass transfer cycles at transformations of relations in the ocean-cryosphere-atmosphere-land system. • An increase atmospheric humidity under influence of tidal forces. • The expansion of a zone of a high pressure, aggravation of high-altitude zone circulation and cyclogenesis. • A mechanism of oceanic mass circulation in the Arctic Basin and restructuring baric systems • A mechanism of dynamic changes of a multiregime process of the weather formation based on the reorganization of energy conversion processes in the surface ECS at change of a media properties and conditionally reversible transformation of relations between elements. • Relations between Atmospheric Action Centers (AAC) have significant influence on energy-mass transfer through the circulation mechanism.

  4. Estimation of variability limits of average annual temperature for regions Stages 1881 -1913 1914-1950 1951-1968 1968-1977 1978-1994 1995-2001 2002-2010 1.7 ÷ 4.2 1.4 ÷ 3.9 1.4 ÷ 4.0 1.8 ÷ 3.9 2.7 ÷ 3.7 2.3 ÷ 4.4 Tr.-Scatto -2.3 ÷ 2.4 -0.6 ÷ 3.7 -1.8 ÷ 3.2 -1.5 ÷ 3.0 -0.4 ÷ 2.9 1.4 ÷ 3.1 2.1 ÷ 3.6 Haparanda -1.3 ÷ 1.8 -0.7 ÷ 2.4 -0.2 ÷ 2.4 -0.1 ÷ 2.3 0.3 ÷ 2.9 0.6 ÷ 2.7 2.1 ÷ 3.1 Vardo 7.5 ÷ 9.8 6.7 ÷ 9.6 6.6 ÷ 9.4 6.8 ÷ 9.2 7.1 ÷ 10.0 7.2 ÷ 9.8 8.6 ÷ 10.5 Wroclaw -1.5 ÷ 2.3 -2.5 ÷ 1.8 -2.1 ÷ 1.4 -1.3 ÷ 2.1 0.1 ÷ 1.8 0.4 ÷ 2.2 Murmansk -1.3 ÷ 3.7 -1.2 ÷ 2.8 -1.6 ÷ 2.8 -1.0 ÷ 3.2 -1.3 ÷ 3.0 0.5 ÷ 2.9 Arkhangelsk -10.8 ÷ -4.2 -8.3 ÷ -2.9 -8.7 ÷ -3.6 -9.0 ÷ -5.3 -8.5 ÷ -3.7 -8.3 ÷ - 2.9 -7.6 ÷ - 4.1 Salekhard -1.6 ÷ 2.4 -1.7 ÷ 1.7 -1.8 ÷ 2.1 -3.5 ÷ 0.9 -0.7 ÷ 2.2 -0.9 ÷ 2.6 -0.1 ÷ 2.6 Tobolsk -3.8 ÷ -0.2 -2.8 ÷ 0.3 -3.9 ÷ 1.0 -7.9 ÷ 0.7 -3.3 ÷ 0.6 -2.9 ÷ 1.5 -1.9 ÷ 0.8 Kh.-Mansiysk -1.5 ÷ 2.4 -1.5 ÷ 2.3 -1.0 ÷ 3.1 -2.0 ÷ 2.0 0 ÷ 3.6 0.3 ÷ 3.1 1.1 ÷ 3.8 Omsk -1.6 ÷ 2.8 -0.6 ÷ 2.1 -0.1 ÷ 3.5 -1.0 ÷ 3.0 0.3 ÷ 4.3 1.1 ÷ 4.3 0.4 ÷ 4.9 Barnaul -9.9 ÷ -5.2 -8.2 ÷ -5.1 -9.7 ÷ -5.2 -10.0 ÷ -5.2 -8.5 ÷ -3.9 -8.2 ÷ - 3.4 -8.0 ÷ - 4.1 Turukhansk -3.3 ÷ 0.6 -3.5 ÷ 0.2 -4.2 ÷ -0.4 -2.3 ÷ 1.0 -2.3 ÷ 1.1 -2.2 ÷ 1.6 Kolpashevo -4.1 ÷ 0.5 -3.8 ÷ -0.3 -2.8 ÷ -0.7 -4.4 ÷ -0.6 -3.0 ÷ 0.6 -2.0 ÷ 0.5 -2.8 ÷ 0.6 Eniseisk -2.5 ÷ -0.3 -2.7 ÷ 0.3 -1.8 ÷ 0.6 -1.6 ÷ 0.4 -0.5 ÷ 1.9 0 ÷ 2.3 -0.4 ÷ 2.9 Irkutsk -4.1 ÷ -2.1 -3.8 ÷ -0.9 -3.7 ÷ 0.1 -3.8 ÷ -0.6 -2.6 ÷ 0.7 -1.2 ÷ 0.8 -2.0 ÷ 1.7 Bratsk

  5. The organization of education habitat and climate cycles

  6. Analysis of changes in regional climate Changes of the states of taiga climate areas and track of monthly CS state

  7. Oscillation of regional climates of Siberia Single directed changes were in all regions. Arrows show directed changes. CS of all regions made a cycle of transition and return to the initial state (1963-1966 yrs). The profile (  ) of space distribution of estimation functions was conserved during all transitions. Rate of estimation characteristic change was 56 % per year in Tomsk, 68% in Khanty- Mansiysk. Amplitude of oscillation was 154%. A single cycle of climatic mesoscale processes in the single CS of Mapping of an ensemble of CS states West Siberia.

  8. Change of duration the without frosty period • Reduction of warm deficit is due to decreased duration of the cold period in the forest-steppe zone (Omsk) in 15-22 days, in the southern taiga subzone (Tomsk) in 13-17 days and in subzone of northern taiga (Khanty-Mansiysk) in 8-12 days due to increase the duration of frost-free period

  9. Empirical informational models • matrix series of meteorological data and measured parameters • matrix series of assessment characteristics of climatic and natural conditions; • matrixes (spatial models with the positional geographical reference) of the state characteristics of climatic systems; • spatial and temporal geographic models represented by the matrix series of annual (seasonal) sequence states of the geographical area; • matrixes of the aggregated description of the natural and climatic conditions of the region.

  10. Matrices of seasonal characteristics of climate condition for Tromo-Scatto and Arkhangelsk Tromo-Scatto Arkhangelsk YEAR D-J-F M-A-M J-J-A S-O-N ANN D-J-F M-A-M J-J-A S-O-N ANN 2002 -2,6 3,4 12,2 1,7 3,67 -11,3 0,9 13,4 -1,1 0,46 2003 -3,3 2,9 11,9 3,9 3,86 -13,7 1,9 14,5 3,5 1,55 2004 -3,6 3,4 11,8 3,6 3,79 -9,3 0,7 14,8 2,3 2,13 2005 -0,7 2 11,6 4,7 4,38 -8,7 -0,8 15,4 5,9 2,93 2006 -1,5 1,9 10,4 3,5 3,57 -13,3 0,4 14,3 1,9 0,83 2007 -2,9 2,7 11,6 4,5 3,94 -9,1 3,1 14,7 3.0 2,93 2008 -0,5 0,4 9,8 3,6 3,31 -5,5 -0,5 13,1 3,8 2,73 2009 -2,2 2,1 11,1 3,8 3,68 -8,3 0,2 13,8 3,4 2,28 2010 -4,9 1,5 9,5 3,1 2,3 -14,6 2,3 15,4 1,8 1,23

  11. Aggregation description of regional climate Performance Characteristics of Estimates of Estimates of Characteristics of characteristics of annual state: seasonal cold and monthly Agroclimate: Biocimate:  Mean annual long-term changes : warm periods: meteorological  moisture reserves in • classes weather  The limits of  The duration meteorological variables: • Index volatility soil  Integral  Monthly variability of states values  temperature regime • Lack of heat  The mean annual  Norms matrices characteristics averages  FAR • Period of UFD  Rhythm perennial  The amplitudes of  Extremes (temperature sum,  characteristics of the  Range changes the annual cycle precipitation) growing season  Extremes  rhythm hydrothermal conditions Typification of the annual state of the climate on the temperature regime type А – duration of the warm period Т WP =9 months, type В – Т WP = 8 months, type С – Т WP =7 months, type D – Т WP = 6, type Е – Т WP = 5 months, type F – Т WP = 4 months, Description of the multi-year rate changes in temperature – sequence of operators C , С, C , Е, D, C … Matrix element of the annual state of Year Т Y Р Z WP Т VII D W τ CP Т W Т I C Z VP the climate М ij is given where rhythm P ={C at T WP =7; D at T = 6}; Z WP – sum of the temperatures of the warm period Z; D W – deficit temperatures ; Z VP - sum of the temperatures of the growing season Empirical date sourse: http://data.giss.nasa.gov/gistemp/station_data/

  12. Assessment of multi-stage changes of the regional climates of Eurasia Year Wroclaw Arkhangelsk Kazan 6,3 А 94 (91) - 54 (6) - 6,0 (-11) 1,8 С 85 (77) -112 ( 7 ) -17 (-19) 1838 -1,1 D 54 (52) -121 (9) -18 (-21) 8,3 В 103 (93) -47 (7) -1,0 (-2) 1839 1,2 D 66 (62) -105 (7) -10 (-13) 4,0 C 92 (86) -96 (7) -10 (-12) 8,5 А'' 95 (84) -35 (6) 1,7 (-1) 4,3 С 86 (77) -84 (7) -8,0 (-11) 1843 0,7 D 53 ( 49 ) -110 (9) -7,0 (-10) 7,5 А 105 (97) -48 (6) -4,0 (-9) 0,0 С 61 (54) -113 (8) -14 (-19) 1850 1,8 D 79 (78) -109 (7) - 16 (-22) 8,4 А 101 (96) -33 (6) -0,1 (-1) 2,0 С 69 (66) -91 (8) -11 (-15) 4,0 В 96 (88) -103 (7) -12 (-15) 1851 7,4 А 100 (91) -52 (6) -4,0 (-9 ) 0,4 С 58 (55) -97 (8) -12 (-17) 4,7 С 92 (80) -64 (7) -9,0 (-12) 1855 9,3 А'' 112 (99) -28 (6) 0,7 (-1) 4,2 С 88 (77) -104 (7) -10 (-12) 1859 2,3 D 60 (59) -92 (8) -8,0 (-9) 9,5 А* 118 (94) -31 (6) 1,0 (-2) 2,3 С 65 (59) -91 (9) -9,0 (-9) 4,0 С 83 (79) -92 (7) -10 (-15) 1863 9,0 А'' 108 (92) -31 (5) 2,0 (-3) 2,5 С 69 (66) -99 (8) -12 (-13) 4,8 В 101 (92) -85 (7) -12 (-18) 1869 6,2 А 92 (80) -51 (7) -6,0 (-7) 1,3 С 80 (73) -103 (7) -19 (-21) 1871 -1,6 D 51 (49) - 139 (9) -20 (-25) 9,2 А' 118 (93) -42 (6) -2,0 (-5) 1872 0,0 D 55 (52 ) -112 (9) -12 (-12) 4,0 C 90 (78) -89 (7) -12 (-16) 9,1 А'' 100 (87) -28 (6) 1,0 (1) 1882 0,9 D 57 (56) -99 (9) -8,8 (10) 3,8 D 84 (84) -92 (7) -11 (-13) 7, 9 А 99 (93) -38 (5) -1,5 (-3) - 1,7 Е 51 (51 ) -110 (8) -17 (-19) 4,4 С 92 (85) -90 (7) -9 (-14) 1887 8, 7 А 108 (99) -34 (5) -1,0 (-3) 4,2 С 95 (86) -84 (7) -11 (-12) 1890 0,9 D 56 (53) -98 (8) -97 (-15) 8,1 А' 109 (101) -44 (5) -3,3 (-9 ) -2,2 D 51 ( 45 ) -138 (9) – 18 (-12) 2,6 С 86 (78) -109 (7) -17 (-20) 1893 9,5 А 110 (96) -23 (5) 2,5 (2) 4,4 С 88 (77) -90 (7) -9 (-13) 1899 -1,3 D 46 (43) -125 (8) -14 (-16) 7,9 А' 104 (98) -45 (6) -2,4 (-4) 1909

Recommend


More recommend