University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Data-driven Closure for Fluid Models of Hall Thrusters Benjamin Jorns University of Michigan Princeton University ExB Workshop
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory The Hall effect thruster for space propulsion πΆ πͺ πΉ π πΉ
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport Ion continuity ππ π ππ’ + πΌ β π π π π = 0 Ion momentum π π π π π π π + πΌ β π π π π π π π π = π π π π β π π π π π π β π π ππ’ Ohmβs Law π π π π π π π π = βππ π πΉ β πΌπ π β ππ π π π Γ πΆ Electron Energy 3 ππ ππ’ = βππ π π β π π β πΌ β 5 + πΉ π + 3 π 2 π π 2 π π π π π π 2 π π πΌ β π π π π Current conservation Closed set of classical equations that can 0 = πΌ β ππ π π π β π π be evaluated with standard techniques
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 0.1% Ion continuity ππ π ππ’ + πΌ β π π π π = 0 Ion momentum π π π π π π π + πΌ β π π π π π π π π = π π π π β π π π π π π β π π ππ’ Ohmβs Law π π π π π π π π = βππ π πΉ β πΌπ π β ππ π π π Γ πΆ Electron Energy 3 ππ ππ’ = βππ π π β π π β πΌ β 5 + πΉ π + 3 π 2 π π 2 π π π π π π 2 π π πΌ β π π π π Current conservation Electron cross-field current from 0 = πΌ β ππ π π π β π π evaluating classical equations
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 0.1% Ion continuity ππ π ππ’ + πΌ β π π π π = 0 Ion momentum π π π π π π π + πΌ β π π π π π π π π = π π π π β π π π π π π β π π ππ’ Ohmβs Law π π π π π π π π = βππ π πΉ β πΌπ π β ππ π π π Γ πΆ Electron Energy 3 ππ ππ’ = βππ π π β π π β πΌ β 5 + πΉ π + 3 π 2 π π 2 π π π π π π 2 π π πΌ β π π π π Current conservation Actual cross-field current from 0 = πΌ β ππ π π π β π π evaluating equations 1000 x higher!
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 0.1% Ion continuity ππ π ππ’ + πΌ β π π π π = 0 Ion momentum π π π π π π π + πΌ β π π π π π π π π = π π π π β π π π π π π β π π ππ’ Ohmβs Law π π π π π π π π = βππ π πΉ β πΌπ π β ππ π π π Γ πΆ βπ π π π π π΅π π π , Electron Energy Need to introduce ad hoc factor 3 ππ ππ’ = βπ π π π β π π β πΌ β 5 + πΉ π + 3 π 2 π π 2 π π π π π π 2 π π πΌ β π π π π π π βAnomalous collision frequency β Current conservation Actual cross-field current from 0 = πΌ β ππ π π π β π π evaluating equations 1000 x higher!
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 10% Ion continuity ππ π ππ’ + πΌ β π π π π = 0 Ion momentum π π π π π π π + πΌ β π π π π π π π π = π π π π β π π π π π π β π π ππ’ Ohmβs Law π π π π π π π π = βππ π πΉ β πΌπ π β ππ π π π Γ πΆ βπ π π π π π΅π π π , Electron Energy Need to introduce ad hoc factor 3 ππ ππ’ = βπ π π π β π π β πΌ β 5 + πΉ π + 3 π 2 π π 2 π π π π π π 2 π π πΌ β π π π π π π βAnomalous collision frequency β Current conservation Anomalous friction term promotes 0 = πΌ β ππ π π π β π π additional cross-field current
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 10% Ion continuity ππ π ππ’ + πΌ β π π π π = 0 Ion momentum π π π π π π π + πΌ β π π π π π π π π = π π π π β π π π π π π β π π ππ’ Ohmβs Law π π π π π π π π = βππ π πΉ β πΌπ π β ππ π π π Γ πΆ βπ π π π π π΅π π π , Electron Energy Need to introduce ad hoc factor 3 ππ ππ’ = βπ π π π β π π β πΌ β 5 + πΉ π + 3 π 2 π π 2 π π π π π π 2 π π πΌ β π π π π π π Problem: introducing ad-hoc term opens set of Current conservation equations (too many unknowns) Anomalous friction term promotes 0 = πΌ β ππ π π π β π π additional cross-field current
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 10% Ion continuity We need a functional form for π π΅π (π ππ π π , π π , . . ) ππ’ + πΌ β π π π π = 0 that depends on classical fluid parameters Ion momentum π π π π π π π + πΌ β π π π π π π π π = π π π π β π π π π π π β π π ππ’ Ohmβs Law π π π π π π π π = βππ π πΉ β πΌπ π β ππ π π π Γ πΆ βπ π π π π π΅π π π , Electron Energy Need to introduce ad hoc factor 3 ππ ππ’ = βπ π π π β π π β πΌ β 5 + πΉ π + 3 π 2 π π 2 π π π π π π 2 π π πΌ β π π π π π π Problem: introducing ad-hoc term opens set of Current conservation equations (too many unknowns) Anomalous friction term promotes 0 = πΌ β ππ π π π β π π additional cross-field current
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Closures for anomalous collision frequency: first-principles Τ¦ πΊ π΅π = βπ π π π π π΅π π π *N. Gascon, M. Dudeck, and S. Barral, PoP , vol. 10, no. 10, 2003 β J. M. Fife and M. Martinez-Sanchez/ IEPC-95-24 β‘ M. A. Cappelli, C. V. Young, E. Cha, and E. Fernandez, PoP , vol. 22, no. 11, 2015. T. Lafleur, S. D. Baalrud, and P. Chabert, PoP , vol. 23, no. 5, 2016 .
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Closures for anomalous collision frequency: first-principles Τ¦ πΊ π΅π = βπ π π π π π΅π π π Instabilities β‘ Wall Interactions* 2 π π΅π = 1 v ππ π π΅π = πΎ π πΏ π ππ π π π‘ π π΅π = πΌ β π£ π π π π π π π π π‘ π π v ππ Bohm Diffusion β π π΅π = 1 πΏ π ππ *N. Gascon, M. Dudeck, and S. Barral, PoP , vol. 10, no. 10, 2003 β J. M. Fife and M. Martinez-Sanchez/ IEPC-95-24 β‘ M. A. Cappelli, C. V. Young, E. Cha, and E. Fernandez, PoP , vol. 22, no. 11, 2015. T. Lafleur, S. D. Baalrud, and P. Chabert, PoP , vol. 23, no. 5, 2016 .
University of Michigan β Plasmadynamics and Electric Propulsion Laboratory Closures for anomalous collision frequency: first-principles Τ¦ πΊ π΅π = βπ π π π π π΅π π π Closure models from first-principles are potentially predictive Instabilities β‘ Wall Interactions* 2 π π΅π = 1 v ππ π π΅π = πΎ π πΏ π ππ π π π‘ Models have to date have had limitations, yielding qualitative π π΅π = πΌ β π£ π π π π agreement over only limited range of conditions π π π π π‘ π π v ππ Bohm Diffusion β Possible that reality is too complicated or models or too reduced fidelity π π΅π = 1 πΏ π ππ *N. Gascon, M. Dudeck, and S. Barral, PoP , vol. 10, no. 10, 2003 β J. M. Fife and M. Martinez-Sanchez/ IEPC-95-24 β‘ M. A. Cappelli, C. V. Young, E. Cha, and E. Fernandez, PoP , vol. 22, no. 11, 2015. T. Lafleur, S. D. Baalrud, and P. Chabert, PoP , vol. 23, no. 5, 2016 .
Recommend
More recommend