data driven closure for fluid models of hall thrusters
play

Data-driven Closure for Fluid Models of Hall Thrusters Benjamin - PowerPoint PPT Presentation

University of Michigan Plasmadynamics and Electric Propulsion Laboratory Data-driven Closure for Fluid Models of Hall Thrusters Benjamin Jorns University of Michigan Princeton University ExB Workshop University of Michigan Plasmadynamics


  1. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Data-driven Closure for Fluid Models of Hall Thrusters Benjamin Jorns University of Michigan Princeton University ExB Workshop

  2. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory The Hall effect thruster for space propulsion 𝐢 π‘ͺ 𝐹 𝑭 𝐹

  3. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport

  4. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport Ion continuity πœ–π‘œ 𝑗 πœ–π‘’ + 𝛼 βˆ™ π‘œ 𝑗 𝒗 𝑗 = 0 Ion momentum πœ– 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 + 𝛼 βˆ™ 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 𝒗 𝑗 = π‘Ÿ π‘œ 𝑗 𝑭 βˆ’ πœ‰ 𝑗 𝑛 𝑗 𝒗 𝑗 βˆ’ 𝒗 𝑓 πœ–π‘’ Ohm’s Law πœ‰ 𝑓 𝑛 𝑓 π‘œ 𝑓 𝒗 𝒇 = βˆ’π‘Ÿπ‘œ 𝑓 𝐹 βˆ’ 𝛼𝑄 𝑓 βˆ’ π‘Ÿπ‘œ 𝑓 𝒗 𝒇 Γ— 𝐢 Electron Energy 3 πœ–π‘ˆ πœ–π‘’ = βˆ’π‘Ÿπ‘œ 𝑓 𝑭 βˆ™ 𝒗 𝑓 βˆ’ 𝛼 βˆ™ 5 + 𝑹 𝒇 + 3 𝑓 2 π‘œ 𝑓 2 π‘œ 𝑓 π‘ˆ 𝑓 𝒗 𝑓 2 π‘ˆ 𝑓 𝛼 βˆ™ π‘œ 𝑓 𝒗 𝑓 Current conservation Closed set of classical equations that can 0 = 𝛼 βˆ™ π‘Ÿπ‘œ 𝑓 𝒗 𝑓 βˆ’ 𝒗 𝑗 be evaluated with standard techniques

  5. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 0.1% Ion continuity πœ–π‘œ 𝑗 πœ–π‘’ + 𝛼 βˆ™ π‘œ 𝑗 𝒗 𝑗 = 0 Ion momentum πœ– 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 + 𝛼 βˆ™ 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 𝒗 𝑗 = π‘Ÿ π‘œ 𝑗 𝑭 βˆ’ πœ‰ 𝑗 𝑛 𝑗 𝒗 𝑗 βˆ’ 𝒗 𝑓 πœ–π‘’ Ohm’s Law πœ‰ 𝑓 𝑛 𝑓 π‘œ 𝑓 𝒗 𝒇 = βˆ’π‘Ÿπ‘œ 𝑓 𝐹 βˆ’ 𝛼𝑄 𝑓 βˆ’ π‘Ÿπ‘œ 𝑓 𝒗 𝒇 Γ— 𝐢 Electron Energy 3 πœ–π‘ˆ πœ–π‘’ = βˆ’π‘Ÿπ‘œ 𝑓 𝑭 βˆ™ 𝒗 𝑓 βˆ’ 𝛼 βˆ™ 5 + 𝑹 𝒇 + 3 𝑓 2 π‘œ 𝑓 2 π‘œ 𝑓 π‘ˆ 𝑓 𝒗 𝑓 2 π‘ˆ 𝑓 𝛼 βˆ™ π‘œ 𝑓 𝒗 𝑓 Current conservation Electron cross-field current from 0 = 𝛼 βˆ™ π‘Ÿπ‘œ 𝑓 𝒗 𝑓 βˆ’ 𝒗 𝑗 evaluating classical equations

  6. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 0.1% Ion continuity πœ–π‘œ 𝑗 πœ–π‘’ + 𝛼 βˆ™ π‘œ 𝑗 𝒗 𝑗 = 0 Ion momentum πœ– 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 + 𝛼 βˆ™ 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 𝒗 𝑗 = π‘Ÿ π‘œ 𝑗 𝑭 βˆ’ πœ‰ 𝑗 𝑛 𝑗 𝒗 𝑗 βˆ’ 𝒗 𝑓 πœ–π‘’ Ohm’s Law πœ‰ 𝑓 𝑛 𝑓 π‘œ 𝑓 𝒗 𝒇 = βˆ’π‘Ÿπ‘œ 𝑓 𝐹 βˆ’ 𝛼𝑄 𝑓 βˆ’ π‘Ÿπ‘œ 𝑓 𝒗 𝒇 Γ— 𝐢 Electron Energy 3 πœ–π‘ˆ πœ–π‘’ = βˆ’π‘Ÿπ‘œ 𝑓 𝑭 βˆ™ 𝒗 𝑓 βˆ’ 𝛼 βˆ™ 5 + 𝑹 𝒇 + 3 𝑓 2 π‘œ 𝑓 2 π‘œ 𝑓 π‘ˆ 𝑓 𝒗 𝑓 2 π‘ˆ 𝑓 𝛼 βˆ™ π‘œ 𝑓 𝒗 𝑓 Current conservation Actual cross-field current from 0 = 𝛼 βˆ™ π‘Ÿπ‘œ 𝑓 𝒗 𝑓 βˆ’ 𝒗 𝑗 evaluating equations 1000 x higher!

  7. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 0.1% Ion continuity πœ–π‘œ 𝑗 πœ–π‘’ + 𝛼 βˆ™ π‘œ 𝑗 𝒗 𝑗 = 0 Ion momentum πœ– 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 + 𝛼 βˆ™ 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 𝒗 𝑗 = π‘Ÿ π‘œ 𝑗 𝑭 βˆ’ πœ‰ 𝑗 𝑛 𝑗 𝒗 𝑗 βˆ’ 𝒗 𝑓 πœ–π‘’ Ohm’s Law πœ‰ 𝑓 𝑛 𝑓 π‘œ 𝑓 𝒗 𝒇 = βˆ’π‘Ÿπ‘œ 𝑓 𝐹 βˆ’ 𝛼𝑄 𝑓 βˆ’ π‘Ÿπ‘œ 𝑓 𝒗 𝒇 Γ— 𝐢 βˆ’π‘œ 𝑓 𝑛 𝑓 πœ‰ 𝐡𝑂 𝒗 𝒇 , Electron Energy Need to introduce ad hoc factor 3 πœ–π‘ˆ πœ–π‘’ = βˆ’π‘Ÿ 𝜍 𝑗 𝑭 βˆ™ 𝒗 𝑓 βˆ’ 𝛼 βˆ™ 5 + 𝑹 𝒇 + 3 𝑓 2 π‘œ 𝑓 2 π‘œ 𝑓 π‘ˆ 𝑓 𝒗 𝑓 2 π‘ˆ 𝑓 𝛼 βˆ™ π‘œ 𝑓 𝒗 𝑓 𝑛 𝑗 β€œAnomalous collision frequency ” Current conservation Actual cross-field current from 0 = 𝛼 βˆ™ π‘Ÿπ‘œ 𝑓 𝒗 𝑓 βˆ’ 𝒗 𝑗 evaluating equations 1000 x higher!

  8. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 10% Ion continuity πœ–π‘œ 𝑗 πœ–π‘’ + 𝛼 βˆ™ π‘œ 𝑗 𝒗 𝑗 = 0 Ion momentum πœ– 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 + 𝛼 βˆ™ 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 𝒗 𝑗 = π‘Ÿ π‘œ 𝑗 𝑭 βˆ’ πœ‰ 𝑗 𝑛 𝑗 𝒗 𝑗 βˆ’ 𝒗 𝑓 πœ–π‘’ Ohm’s Law πœ‰ 𝑓 𝑛 𝑓 π‘œ 𝑓 𝒗 𝒇 = βˆ’π‘Ÿπ‘œ 𝑓 𝐹 βˆ’ 𝛼𝑄 𝑓 βˆ’ π‘Ÿπ‘œ 𝑓 𝒗 𝒇 Γ— 𝐢 βˆ’π‘œ 𝑓 𝑛 𝑓 πœ‰ 𝐡𝑂 𝒗 𝒇 , Electron Energy Need to introduce ad hoc factor 3 πœ–π‘ˆ πœ–π‘’ = βˆ’π‘Ÿ 𝜍 𝑗 𝑭 βˆ™ 𝒗 𝑓 βˆ’ 𝛼 βˆ™ 5 + 𝑹 𝒇 + 3 𝑓 2 π‘œ 𝑓 2 π‘œ 𝑓 π‘ˆ 𝑓 𝒗 𝑓 2 π‘ˆ 𝑓 𝛼 βˆ™ π‘œ 𝑓 𝒗 𝑓 𝑛 𝑗 β€œAnomalous collision frequency ” Current conservation Anomalous friction term promotes 0 = 𝛼 βˆ™ π‘Ÿπ‘œ 𝑓 𝒗 𝑓 βˆ’ 𝒗 𝑗 additional cross-field current

  9. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 10% Ion continuity πœ–π‘œ 𝑗 πœ–π‘’ + 𝛼 βˆ™ π‘œ 𝑗 𝒗 𝑗 = 0 Ion momentum πœ– 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 + 𝛼 βˆ™ 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 𝒗 𝑗 = π‘Ÿ π‘œ 𝑗 𝑭 βˆ’ πœ‰ 𝑗 𝑛 𝑗 𝒗 𝑗 βˆ’ 𝒗 𝑓 πœ–π‘’ Ohm’s Law πœ‰ 𝑓 𝑛 𝑓 π‘œ 𝑓 𝒗 𝒇 = βˆ’π‘Ÿπ‘œ 𝑓 𝐹 βˆ’ 𝛼𝑄 𝑓 βˆ’ π‘Ÿπ‘œ 𝑓 𝒗 𝒇 Γ— 𝐢 βˆ’π‘œ 𝑓 𝑛 𝑓 πœ‰ 𝐡𝑂 𝒗 𝒇 , Electron Energy Need to introduce ad hoc factor 3 πœ–π‘ˆ πœ–π‘’ = βˆ’π‘Ÿ 𝜍 𝑗 𝑭 βˆ™ 𝒗 𝑓 βˆ’ 𝛼 βˆ™ 5 + 𝑹 𝒇 + 3 𝑓 2 π‘œ 𝑓 2 π‘œ 𝑓 π‘ˆ 𝑓 𝒗 𝑓 2 π‘ˆ 𝑓 𝛼 βˆ™ π‘œ 𝑓 𝒗 𝑓 𝑛 𝑗 Problem: introducing ad-hoc term opens set of Current conservation equations (too many unknowns) Anomalous friction term promotes 0 = 𝛼 βˆ™ π‘Ÿπ‘œ 𝑓 𝒗 𝑓 βˆ’ 𝒗 𝑗 additional cross-field current

  10. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Problem of anomalous electron transport I e / I d ~ 10% Ion continuity We need a functional form for πœ‰ 𝐡𝑂 (π‘ˆ πœ–π‘œ 𝑗 𝑓 , π‘œ 𝑓 , . . ) πœ–π‘’ + 𝛼 βˆ™ π‘œ 𝑗 𝒗 𝑗 = 0 that depends on classical fluid parameters Ion momentum πœ– 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 + 𝛼 βˆ™ 𝑛 𝑗 π‘œ 𝑗 𝒗 𝑗 𝒗 𝑗 = π‘Ÿ π‘œ 𝑗 𝑭 βˆ’ πœ‰ 𝑗 𝑛 𝑗 𝒗 𝑗 βˆ’ 𝒗 𝑓 πœ–π‘’ Ohm’s Law πœ‰ 𝑓 𝑛 𝑓 π‘œ 𝑓 𝒗 𝒇 = βˆ’π‘Ÿπ‘œ 𝑓 𝐹 βˆ’ 𝛼𝑄 𝑓 βˆ’ π‘Ÿπ‘œ 𝑓 𝒗 𝒇 Γ— 𝐢 βˆ’π‘œ 𝑓 𝑛 𝑓 πœ‰ 𝐡𝑂 𝒗 𝒇 , Electron Energy Need to introduce ad hoc factor 3 πœ–π‘ˆ πœ–π‘’ = βˆ’π‘Ÿ 𝜍 𝑗 𝑭 βˆ™ 𝒗 𝑓 βˆ’ 𝛼 βˆ™ 5 + 𝑹 𝒇 + 3 𝑓 2 π‘œ 𝑓 2 π‘œ 𝑓 π‘ˆ 𝑓 𝒗 𝑓 2 π‘ˆ 𝑓 𝛼 βˆ™ π‘œ 𝑓 𝒗 𝑓 𝑛 𝑗 Problem: introducing ad-hoc term opens set of Current conservation equations (too many unknowns) Anomalous friction term promotes 0 = 𝛼 βˆ™ π‘Ÿπ‘œ 𝑓 𝒗 𝑓 βˆ’ 𝒗 𝑗 additional cross-field current

  11. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Closures for anomalous collision frequency: first-principles Τ¦ 𝐺 𝐡𝑂 = βˆ’π‘œ 𝑓 𝑛 𝑓 πœ‰ 𝐡𝑂 𝒗 𝑓 *N. Gascon, M. Dudeck, and S. Barral, PoP , vol. 10, no. 10, 2003 † J. M. Fife and M. Martinez-Sanchez/ IEPC-95-24 ‑ M. A. Cappelli, C. V. Young, E. Cha, and E. Fernandez, PoP , vol. 22, no. 11, 2015. T. Lafleur, S. D. Baalrud, and P. Chabert, PoP , vol. 23, no. 5, 2016 .

  12. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Closures for anomalous collision frequency: first-principles Τ¦ 𝐺 𝐡𝑂 = βˆ’π‘œ 𝑓 𝑛 𝑓 πœ‰ 𝐡𝑂 𝒗 𝑓 Instabilities ‑ Wall Interactions* 2 πœ‰ 𝐡𝑂 = 1 v 𝑒𝑓 πœ‰ 𝐡𝑂 = 𝛾 π‘ˆ 𝐿 πœ• 𝑑𝑓 𝑓 𝑑 𝑑 πœ‰ 𝐡𝑂 = 𝛼 βˆ™ 𝑣 𝑗 π‘œ 𝑓 π‘ˆ 𝑓 𝑛 𝑓 𝑑 𝑑 π‘œ 𝑓 v 𝑒𝑓 Bohm Diffusion † πœ‰ 𝐡𝑂 = 1 𝐿 πœ• 𝑑𝑓 *N. Gascon, M. Dudeck, and S. Barral, PoP , vol. 10, no. 10, 2003 † J. M. Fife and M. Martinez-Sanchez/ IEPC-95-24 ‑ M. A. Cappelli, C. V. Young, E. Cha, and E. Fernandez, PoP , vol. 22, no. 11, 2015. T. Lafleur, S. D. Baalrud, and P. Chabert, PoP , vol. 23, no. 5, 2016 .

  13. University of Michigan – Plasmadynamics and Electric Propulsion Laboratory Closures for anomalous collision frequency: first-principles Τ¦ 𝐺 𝐡𝑂 = βˆ’π‘œ 𝑓 𝑛 𝑓 πœ‰ 𝐡𝑂 𝒗 𝑓 Closure models from first-principles are potentially predictive Instabilities ‑ Wall Interactions* 2 πœ‰ 𝐡𝑂 = 1 v 𝑒𝑓 πœ‰ 𝐡𝑂 = 𝛾 π‘ˆ 𝐿 πœ• 𝑑𝑓 𝑓 𝑑 𝑑 Models have to date have had limitations, yielding qualitative πœ‰ 𝐡𝑂 = 𝛼 βˆ™ 𝑣 𝑗 π‘œ 𝑓 π‘ˆ agreement over only limited range of conditions 𝑓 𝑛 𝑓 𝑑 𝑑 π‘œ 𝑓 v 𝑒𝑓 Bohm Diffusion † Possible that reality is too complicated or models or too reduced fidelity πœ‰ 𝐡𝑂 = 1 𝐿 πœ• 𝑑𝑓 *N. Gascon, M. Dudeck, and S. Barral, PoP , vol. 10, no. 10, 2003 † J. M. Fife and M. Martinez-Sanchez/ IEPC-95-24 ‑ M. A. Cappelli, C. V. Young, E. Cha, and E. Fernandez, PoP , vol. 22, no. 11, 2015. T. Lafleur, S. D. Baalrud, and P. Chabert, PoP , vol. 23, no. 5, 2016 .

Recommend


More recommend