cyclic structures and incidence theorems
play

Cyclic Structures and Incidence Theorems Jrgen Richter-Gebert - PowerPoint PPT Presentation

Cyclic Structures and Incidence Theorems Jrgen Richter-Gebert Technical University Munich Stupid Proofs for Interesting (?) Theorems Jrgen Richter-Gebert Technical University Munich Topics we will meet Incidence Theorems Oriented


  1. A non-realizable configuration (abi) ==> [abh][agi]=+[abg][ahi] (acf) ==> [adf][acj]=-[acd][afj] (adh) ==> [abd][afh]=-[abh][adf] b a i (bce) ==> [bcd][bej]=-[bde][bcj] (bdg) ==> [abg][bde]=-[abd][beg] c (cdj) ==> [acd][bcj]=+[acj][bcd] (efj) ==> [afj][egj]=+[aej][fgj] (egi) ==> [aeg][ghi]=-[agi][egh] d (fhi) ==> [ahi][fgh]=-[afh][ghi] e (ghj) ==> [egh][fgj]=+[egj][fgh] f [aeg][bej]=+[aej][beg] ==> (abe) or (egj) j h g

  2. A non-realizable configuration (abi) ==> [abh][agi]=+[abg][ahi] (acf) ==> [adf][acj]=-[acd][afj] (adh) ==> [abd][afh]=-[abh][adf] b a i (bce) ==> [bcd][bej]=-[bde][bcj] (bdg) ==> [abg][bde]=-[abd][beg] c (cdj) ==> [acd][bcj]=+[acj][bcd] (efj) ==> [afj][egj]=+[aej][fgj] (egi) ==> [aeg][ghi]=-[agi][egh] d (fhi) ==> [ahi][fgh]=-[afh][ghi] e (ghj) ==> [egh][fgj]=+[egj][fgh] f [aeg][bej]=+[aej][beg] ==> (abe) or (egj) j h g

  3. A non-realizable configuration (abi) ==> [abh][agi]=+[abg][ahi] (acf) ==> [adf][acj]=-[acd][afj] (adh) ==> [abd][afh]=-[abh][adf] b a i (bce) ==> [bcd][bej]=-[bde][bcj] (bdg) ==> [abg][bde]=-[abd][beg] c (cdj) ==> [acd][bcj]=+[acj][bcd] (efj) ==> [afj][egj]=+[aej][fgj] (egi) ==> [aeg][ghi]=-[agi][egh] d (fhi) ==> [ahi][fgh]=-[afh][ghi] e (ghj) ==> [egh][fgj]=+[egj][fgh] f [aeg][bej]=+[aej][beg] ==> (abe) or (egj) j h g

  4. Six points on a conic 2 1 3 6 4 5 Six points 1 , 2 , 3 , 4 , 5 , 6 are on a conic <==> [123][156][426][453] = [456][126][254][423]

  5. Pascal’ s Theorem 2 1 3 8 7 9 6 4 [159][257] = -[125][579] [126][368] = +[136][268] [245][279] = -[249][257] 5 [249][268] = -[246][289] [346][358] = +[345][368] [135][589] = -[159][358] [125][136][246][345] = +[126][135][245][346] [289][579] = +[279][589]

  6. Problems of this method (binomial-proofs) Usually large search space What is the “structure” of the proof How to cut down the search space in advance

  7. Problems of this method (binomial-proofs) Usually large search space What is the “structure” of the proof How to cut down the search space in advance A ambitious dream: Look at a theorem.... “see” its structure.... .... and produce a proof immediately!!

  8. Coxeter’ s proof of Pappos’ s Theorem

  9. The Theorems of Ceva and Menelaos

  10. Ceva and Menelaos C C Y Y X X A B A Z B Z |AZ|·|BX|·|CY| |AZ|·|BX|·|CY| |ZB|·|XC|·|YA| = 1 |ZB|·|XC|·|YA| = -1

  11. Ceva and Menelaos C C Y Y X D X A B A Z B Z |AZ|·|BX|·|CY| |AZ|·|BX|·|CY| |ZB|·|XC|·|YA| = 1 |ZB|·|XC|·|YA| = -1 [CDA] [ADB] [BDC] [XYA] [XYB] [XYC] · · · · [CDB] [ADC] [BDA]= -1 = 1 [XYB] [XYC] [XYA]

  12. Glueing A |AX|·|BY|·|CZ| |XB|·|YC|·|ZA| = 1 S X |AZ|·|CR|·|DS| |ZC|·|RD|·|SA| = 1 D B Z R Y C

  13. Glueing A |AX|·|BY|·|CZ| |XB|·|YC|·|ZA| = 1 S X |AZ|·|CR|·|DS| |ZC|·|RD|·|SA| = 1 D B Z R |AX|·|BY|·|CR|·|DS| = 1 Y |XB|·|YC|·|RD|·|SA| C

  14. Glueing a 1 b 4 a 4 b 1 a 1 a 2 a 3 a 4 = 1 b 1 b 2 b 3 b 4 b 3 a 2 a 3 b 2

  15. Glueing b 6 a 1 a 1 a 2 a 3 a 4 a 5 a 6 a 6 = 1 b 1 b 1 b 2 b 3 b 4 b 5 b 6 b 5 a 2 a 5 b 2 b 4 a 3 a 4 b 3

  16. Glueing + = A “factory” for geometric theorems

  17. A theorem on a tetrahedron Front: two triangles with Ceva

  18. A theorem on a tetrahedron Back: two triangles with Ceva

  19. A theorem on a tetrahedron After glueing: an incidence theorem

  20. 4 Times Ceva spatial interpretations interesting degenerate situations A special case of Pappus’ s Theorem as special case Ceva on four sides of a tetrahedron

  21. A census of incidence theorems M C M + + C C ==> harmonic points M C M M C ==> many interesing + + C C C C degenerate cases M C M C + + M M ==> Desargues’ s Thm. M C M M

  22. Harmonic Quadruples C M + C M Front: two triangles with Ceva

  23. Harmonic Quadruples C M + C M Back: two triangles with Menelaos

  24. Harmonic Quadruples C M + C M Glued: Uniques of harmonic point construction

  25. Desargues by Glueing M + M M M Front: two triangles with Menelaos

  26. Desargues by Glueing M + M M M Back: two triangles with Menelaos

  27. Desargues by Glueing M + M M M Glued: Desargues’ s Theorem

  28. Six triangles 1 1 2 2 5 1 2 1 1 3 4 1 2 1 Double pyramid Degenerate torus over triangle ...and other degenerate spheres

  29. Six triangles 1 1 2 2 5 1 2 1 1 3 4 1 2 1 Double pyramid Degenerate torus over triangle ...and other degenerate spheres

  30. Six triangles Six times Ceva

  31. Six triangles Folding the triangles Six times Ceva

  32. Six triangles Six times Ceva --> after identification

  33. Six triangles Pappus’ s Theorem

  34. Moving points to infinity Pappus affine Pappus

  35. Grid theorems -1 +1 +1 -1 -1 +1 “row sums” = “colums sums” = “diagonal sums” = 0

  36. Another Theorem +1 -1 -1 +1 +1 -1 -1 +1 “row sums” = “colums sums” = “diagonal sums” = 0

  37. Larger Grid Theorems + = Composition of grid theorems “space of such theorems” is a vector space “little” Pappus configurations are a basis

  38. Larger Grid Theorems Composition can be interpreted topologically

  39. „Geometrie der Waben“ compare Blaschke 1937

  40. Arrangements of pseudolines

  41. Rombic Tilings with three Directions

  42. Rombic Tilings with three Directions

  43. Conversion of proofs C 4 7 [124][137]=[127][134] [154][197]=[157][194] 9 [184][167]=[187][164] [427][491]=[421][497] B A [457][461]=[451][467] 8 2 [487][431]=[481][437] 1 [721][764]=[724][761] [751][734]=[754][731] 7 4 [781][794]=[784][791] 6 3 A B 5 4 7 C

  44. Conversion of proofs C 4 7 [124][137]=[127][134] [154][197]=[157][194] 149 197 9 [184][167]=[187][164] 124 178 [427][491]=[421][497] B A [457][461]=[451][467] 8 479 2 [487][431]=[481][437] 1 [721][764]=[724][761] 127 427 478 148 [751][734]=[754][731] 7 4 [781][794]=[784][791] 6 167 467 347 134 3 - Works in general 457 A B - Use Tutte-Groups 146 137 5 - and homotopy 154 157 A different Story 4 7 C

  45. From: Self-Dual Configurations and Regular Graphs Coxeter, 1950

  46. Glue versus matter Graph: vertices -> brackets, edges -> bracktes differing by one letter Grassmann Menelaus Ceva [12x][13y]-[12y][13x]

  47. Glue versus matter

  48. Glue versus matter

  49. Glue versus matter

  50. Glue versus matter BFP <--> CM

  51. And Conics ? a 1 a 1 a 2 a 3 a 4 a 5 a 6 = 1 b 6 b 5 b 1 b 2 b 3 b 4 b 5 b 6 a 2 Carnot’ s Theorem b 1 a 6 b 2 b 4 a 4 a 5 a 3 b 3

  52. A Conic Theorem Works for any orientable triangulated manifold

  53. A Conic Theorem Works for any orientable triangulated manifold

  54. A Conic Theorem Works for any orientable triangulated manifold

  55. Pascal’ s Theorem A M B C M M M B C A B C Car + A

  56. Loose Ends on Circles K L M

  57. Loose Ends on Circles

  58. Loose Ends on Circles

  59. Loose Ends on Circles

Recommend


More recommend