combinatorial aspects in recurrent seqences over finite
play

Combinatorial aspects in recurrent seqences over finite alphabets - PDF document

Combinatorial aspects in recurrent seqences over finite alphabets Mihai Prunescu Bucharest , September 8, 2013 MOTTO .... wir haben die Kunst, damit wir nicht an der Wahrheit zugrunde gehen ..... Friedrich Nietzsche Definition ( A, f, 1): A


  1. Combinatorial aspects in recurrent seqences over finite alphabets Mihai Prunescu Bucharest , September 8, 2013

  2. MOTTO .... wir haben die Kunst, damit wir nicht an der Wahrheit zugrunde gehen ..... Friedrich Nietzsche

  3. Definition ( A, f, 1): A finite, f : A 3 → A , 1 ∈ A Recurrent double sequence ( a ( i, j )): • ∀ i ∀ j a ( i, 0) = a (0 , j ) = 1 • i > 0 ∧ j > 0 : a ( i, j ) = f ( a ( i − 1 , j ) , a ( i − 1 , j − 1) , a ( i, j − 1))

  4. ( F 5 , 4 x 2 y 4 z 2 + 4 x 4 y 3 + 4 y 3 z 4 + 2 xy 2 z + 3 , 1)

  5. ( F 5 , 4 x 4 z 4 + 4 x 2 y 2 + 4 y 2 z 2 + 4 y 2 , 2)

  6. ( F 5 , 3 x 4 z 4 + 3 x 2 y 2 + 3 y 2 z 2 + 2 x 3 yz 3 + 1 , 1)

  7. ( F 5 , 4 x 4 z 4 + 4 x 2 y 2 + 4 y 2 z 2 + 4 x 3 y 2 z 3 + 2 , 1)

  8. ( F 5 , 2 x 3 y 3 z 3 + 2 x 2 + 2 z 2 + 4 xy 3 z + 4 , 1)

  9. ( F 5 , x 2 y 3 z 2 + x 4 y 2 + y 2 z 4 + 3 x 3 y 3 z 3 + 4 , 1)

  10. ( F 5 , 2 x 3 y 2 z 3 + 2 x 3 y 3 + 2 y 3 z 3 + 3 x 4 z 4 + 1 , 1)

  11. ( F 5 , 3 x 3 y 2 z 3 +3 x 3 y 3 +3 y 3 z 3 +4 x 2 y 2 z 2 +4 , 1)

  12. Turing Completeness ( A, f : A 2 → A, 0 , 1) a ( i, j ) = f ( a ( i, j − 1) , a ( i − 1 , j )) Theorem 1 ∀ ( M, w ) Turing Machine with input ∃ A = ( A, f, 0 , 1) finite, commutative, so that: ( a ( i, j )) ultimately zero ⇐ ⇒ M stops with empty band, without having ever been left from the start cell. M. P: Undecidable properties of the recurrent double sequences . Notre Dame Journal of Formal Logic, 49, 2, 143 - 151, 2008.

  13. a, b, c, d letters z state δ = ( c, z ) new letter b ( δ, b ) δ ( a, δ ) a d To construct a commutative structure, one needs 8 diagonals in stead of only 2.

  14. ”Stopping Computation 1”, 625 × 625 ( F 5 , 4 x 4 z 4 + 4 xy 3 + 4 y 3 z + 4 xy 3 z + 4 , 1)

  15. ”Stopping Computation 2”, 20 × 20 ( F 5 , x 4 z 4 + x 2 y 4 + y 4 z 2 + 2 xyz + 3 , 1)

  16. Selfsimilar double sequences ( F q , f ( x, y, z ) = x + my + z, 1) F = ( a ( i, j ) | 0 ≤ i, j < p ), q = p s ϕ ( x ) = x p Frobenius’ Automorphism G d = ( a ( i, j ) | 0 ≤ i, j < p d ) Theorem 2 G d = ϕ d − 1 ( F ) ⊗ ϕ d − 2 ( F ) ⊗ · · · ⊗ ϕ ( F ) ⊗ F If F q = F p , then G d = F ⊗ d . Substitution: start with 1 and apply rules of type: element → matrix a → aF The sequence f matrices ( G d ) converges to a self-similar fractal . M. P: Self-similar carpets over finite fields . European Journal of Combinatorics, 30, 4, 866 - 878, 2009.

  17. Pascal’s Triangle mod 2 ( F 2 , x + z, 1), d = 9 � � � � 1 1 0 0 1 → 0 → 1 0 0 0

  18. Lakhtakia - Passoja Carpet mod 23 ( F 23 , x + y + z, 1), d = 2 G 2 : ∀ k ∈ F 23 Color( k ) = Color(23 − k )

  19. Substitution [ element → matrix ] ❀ [ matrix → matrix ] x ≥ 1 basic granulation s ≥ 2 scaling, y = xs X ⊂ A x × x finite Y ⊂ A y × y finite ∀ Y ∈ Y Y = ( X ( i, j ) ∈ X | 0 ≤ i, j < s ) Σ : X → Y rule of substitution X 1 ∈ X start symbol ( X , Y , Σ , X 1 ) system of substitutions S (1) = X 1 , S ( n ) = Σ n − 1 ( X 1 )

  20. Expansive systems of substitutions ( X , Y , Σ , X 1 ) expansive, if Σ( X 1 ) = ( X ( i, j ) ∈ X ) | = X (0 , 0) = X 1 Lemma 3 ( X , Y , Σ , X 1 ) expansive.Then for all n > 0 is the matrix S ( n ) the xs n − 1 × xs n − 1 left upper corner of the matrix S ( n + 1) . � � S ( n ) U S ( n + 1) = V W Let T ∈ A wx × zx be a matrix. Definition : N x = { K ∈ A 2 x × 2 x | K occurs in T and starts in some ( kx, lx ) }

  21. Theorem 4 ( A, f, Margins ) ❀ R ( A, X , Y , Σ , X 1 ) , x → sx , ❀ S R ( n ) := ( a ( i, j ) | 0 ≤ i, j < xs n − 1 ) If there is some m > 1 , so that : - R ( m ) = S ( m ) - N x ( S ( m − 1)) = N x ( S ( m )) - S | ( i = 0) = R | ( i = 0) - S | ( j = 0) = R | ( j = 0) Then R = S . M. P: Recurrent double sequences that can be pro- duced by context-free substitutions. Fractals, Vol 18, Nr. 1, 1 - 9, 2010.

  22. Twin Peaks, 2560 × 2560. F 4 = { 0 , 1 , ǫ, ǫ 2 = ǫ + 1 } = { 0 , 1 , 2 , 3 } ( F 4 , y + ǫ ( x + z ) + ǫ 2 ( x 2 + y 2 + z 2 ) , 1)

  23. � 1 1 1 1 � � 1 � � X 1 � 1 X 2 1 2 2 2 X 1 = − → = 1 2 X 3 X 4 1 2 0 1 1 2 1 0 � 1 1 1 1 � � 1 � � X 2 � 1 2 2 2 2 X 2 X 2 = − → = 2 2 0 1 0 1 X 5 X 5 2 0 2 0 � 1 2 0 2 � � 1 � � X 3 � 2 X 6 1 2 1 0 − → X 3 = = 1 2 X 3 X 6 1 2 0 2 1 2 1 0 � 0 0 1 1 � � 0 � � X 7 � 1 X 1 0 0 1 2 X 4 = − → = 1 0 X 1 X 9 1 1 0 3 1 2 3 0 � 0 0 1 1 � � X 8 � 0 � � 1 X 1 3 0 1 2 X 5 = − → = 2 0 X 10 X 11 0 2 0 3 2 0 0 0 � 0 3 0 2 � � 0 � � X 11 � 2 0 0 2 0 X 10 X 6 = − → = 1 0 1 1 0 0 X 1 X 8 1 2 3 0 � 0 0 0 0 � � 0 � � X 7 � 0 X 7 0 0 0 0 − → X 7 = = 0 0 X 7 X 7 0 0 0 0 0 0 0 0

  24. � 0 0 0 0 � � X 8 � 0 � � 0 X 7 3 0 0 0 X 8 = − → = 3 0 X 12 X 8 1 3 0 0 3 2 3 0 � 0 3 1 3 � � X 9 � 0 3 � � 3 0 3 2 X 12 X 9 = − → = 3 0 1 3 0 3 X 12 X 9 3 2 3 0 � 0 3 0 2 � � X 9 � 0 � � 2 X 10 3 0 2 0 − → X 10 = = 2 0 X 10 X 7 0 2 0 0 2 0 0 0 � 0 3 1 3 � � 0 � � X 11 � 3 X 12 0 0 3 2 X 11 = − → = 0 0 X 7 X 11 0 0 0 3 0 0 0 0 � 1 2 1 3 � � 1 � � X 13 � 3 X 14 2 2 0 2 X 12 = − → = 3 2 X 15 X 4 1 0 0 1 3 2 1 0 � 1 2 0 2 � � 1 � � X 13 � 2 X 6 2 2 1 0 X 13 = − → = 2 2 0 1 0 2 X 5 X 10 2 0 2 0 � 1 2 1 3 � � X 3 � 1 � � 3 X 14 1 2 0 2 − → X 14 = = 0 2 X 11 X 5 0 3 0 1 0 0 2 0 � 1 1 0 0 � X 2 � � 1 � � 0 X 8 2 2 3 0 X 15 = − → = 3 2 X 15 X 6 1 0 0 2 3 2 1 0

  25. Ivy, 625 × 625 ( F 5 , x 3 z 3 + x 4 y + yz 4 + 2 xyz + 4 , 1) 1802 rules 256 → 512

  26. Square Root, 625 × 625 ( F 5 , 3 x 3 y 2 z 3 +3 x 3 y 3 +3 y 3 z 3 +4 x 2 y 2 z 2 +4 , 1) 26 rules 8 → 16

  27. Is every recurrent double sequence a substitution? DEFINITELY NOT! Some counterexamples interpret the set N of the natural numbers.

  28. Stairway to Heaven, 58 × 58 ( F 5 , 2 x 3 y 3 z 3 + 2 xy 2 + 2 y 2 z + y, 1)

  29. Second Stairway to Heaven, 50 × 50 ( F 5 , 4 x 3 yz 3 + 4 x 4 y 2 + 4 y 2 z 4 + x 2 y 2 z 2 + 4 , 1)

  30. Third Stairway to Heaven ( F 3 , xy 2 + y 2 z + xy + yz + x 2 + z 2 + 2 x + 2 z + 2 , 1)

  31. ORDINAL Stairway ( F 3 , 2 y 2 + x 2 z + xz 2 + 1 , 1)

  32. Minimal example of non-automatic recurrent double sequence ( F 2 , 1 + x + z + yz, 1 , 1), 64 × 12

  33. The true reason of the minimal example ( F 2 , x + y + yz, (01) , 0), 128 × 10 Mihai Prunescu: A two-valued recurrent double sequence that is not automatic.

  34. Margins as inputs Periodic margins

  35. ( Z / 3 Z , x + y + z, ′ 001 ′ ), 243 × 243 23 rules 3 → 9

  36. ( Z / 3 Z , x + y + z, ′ 110 ′ ), 243 × 243 23 rules 3 → 9

  37. Margins as input Linear substitution

  38. Thue - Morse Sequence ( { 0 , 1 } , { 0 → 01 , 1 → 10 } , 0) 01101001100101101001011001101001 . . . t n = s 2 ( n ) mod 2 [ s 2 ( n ) := # { i | a i = 1 , n = a k 2 k + · · · + a 0 } ] ∞ ∞ (1 − x 2 i ) = ( − 1) t j x j � � i =0 j =0 . . . . . . . . .

  39. Pascal - Thue - Morse mod 2, 512 × 512 ( Z / 2 Z , x + z, Thue − Morse) 15 rules 4 → 8

  40. Pascal - Thue - Morse mod 4, 512 × 512 ( Z / 4 Z , x + z, Thue − Morse) 284 rules 8 → 16

  41. Arab Empire ( Z / 3 Z , x + y + z, 0 → 010 , 1 → 111) 171 rules 3 → 9

  42. General Recurrence u k > 0 as elements of Z n � u 1 , � u 2 , . . . , � according to the lexicographic ordering. f : A k → A a ( � x ) = f ( a ( � x − � u 1 ) , . . . , a ( � x − � u k ))

  43. Twin Peaks, 2560 × 2560. F 4 = { 0 , 1 , ǫ, ǫ 2 = ǫ + 1 } = { 0 , 1 , 2 , 3 } ( F 4 , y + ǫ ( x + z ) + ǫ 2 ( x 2 + y 2 + z 2 ) , 1) 15 rules 2 → 4

  44. Twin Peaks ( F 2 , x + y + z + t, 1 , 1 , 1 , 1) (0 , 1), (1 , 2), (2 , 1), (1 , 0) 15 rules 4 → 8

  45. Lamps, Vincent van Gogh. ( M 2 ( F 2 ) , Y x + uy + cz, I ) Y , u , c , I constants 112 rules 2 → 4

  46. Lamps, Vincent van Gogh. ( F 2 , x + y + z + t + u + v, 1 , 1 , 1 , 1) (0 , 1), (1 , 0), (1 , 1), (1 , 2), (2 , 0), (2 , 1) 112 rules 4 → 8

Recommend


More recommend