IAEA Technical Meeting on Technical Aspects of Atomic and Molecular Data Processing and Exchange 23rd Meeting of the Atomic and Molecular Data Centres Network IAEA Headquarters, Vienna, Austria 2-4 November 2015 CURRENT ACTIVITY IN RUSSIA ON ATOMIC, MOLECULAR AND PMI DATA P.R. Goncharov 1 , A.B. Kukushkin 2,3 1 Peter the Great Polytechnic University, 195251, St Petersburg, Russia 2 NRC Kurchatov Institute, 123182, Moscow, Russia 3 NRNU Moscow Engineering Physics Institute, 115409, Russia P.R. Goncharov, A.B. Kukushkin, 23rd Meeting of the Atomic and Molecular Data Centres Network, 2-4 November 2015 , IAEA Headquarters, Vienna, Austria
Contributors • A.V. Demura, B.I. Khripunov, A.B. Kukushkin, V.S. Lisitsa, Yu.V. Martynenko, D.Kh. Morozov, V.S. Neverov NRC Kurchatov Institute • V.A. Kurnaev, L.B. Begrambekov, Yu.M. Gasparyan, Ya.A. Sadovskiy Moscow Engineering Physics Institute • S.N. Tugarinov Troitsk Institute for Innovation and Fusion Research • V.G. Kapralov, I.A. Sharov, V.M. Timokhin, A.S. Smirnov, T.V. Chernoizumskaya Peter the Great Polytechnic University • M.N. Panov, E.E. Mukhin, G.S. Kurskiev, N.N. Bakharev, A.V. Voronin, M.I. Mironov, V.G. Nesenevich, M.P. Petrov A.F. Ioffe Physico-Technical Institute • V.P. Shevelko P.N. Lebedev Physical Institute • A.S. Arakcheev, S.V. Polosatkin, G.I. Budker Institute of Nuclear Physics P.R. Goncharov, A.B. Kukushkin, 23rd Meeting of the Atomic and Molecular Data Centres Network, 2-4 November 2015 , IAEA Headquarters, Vienna, Austria
Outline • Generation of atomic and molecular data for nuclear fusion research needs • Use of atomic and molecular data in controlled fusion research • Plasma-material interaction data generation and use in magnetic confinement fusion research centres • Conclusions P.R. Goncharov, A.B. Kukushkin, 23rd Meeting of the Atomic and Molecular Data Centres Network, 2-4 November 2015 , IAEA Headquarters, Vienna, Austria
1. Generation of atomic and molecular data for nuclear fusion research needs P.R. Goncharov, A.B. Kukushkin, 23rd Meeting of the Atomic and Molecular Data Centres Network, 2-4 November 2015 , IAEA Headquarters, Vienna, Austria
A.F. Ioffe Physico-Technical Institute M.N. Panov et al. Process Method Data Source / Publications Verification / Problem Code Application Charge Projectile Experimental V.V. Afrosimov, Applicable in Plasma changing energy range stand described A.A. Basalaev, numerical diagnostics, collisions of E = (1 – 50)*Z in G.N. Ogurtsov, modelling of plasma heating H + , D + , He 2+ keV V.V. Afrosimov, M.N. Panov physical and current drive (Z – projectile with atoms of A.A. Basalaev, Tech. Phys. 59 processes in charge number) . construction M.N. Panov, (2014) 642-648 controlled fusion Target is materials. O.V. Smirnov devices prepared by SS may Tech. Phys. thermal contain Lett. 31 (2005) sputtering. C (< 1%), 1055-1057 Pressure 10 -3 Si (~0.8%), Torr in effusion Mn (1 - 9%), cell for Cr (~20%), construction Ni ( < 10%), materials is Ti (~1%), maintained in Fe (47 - temperature 70%) range 1146 K (Mn) - 2669 K (C). P.R. Goncharov, A.B. Kukushkin, 23rd Meeting of the Atomic and Molecular Data Centres Network, 2-4 November 2015 , IAEA Headquarters, Vienna, Austria
Laboratory of Atomic Collision Physics Magnetic analyzer Collision of primary chamber beam ions Detector of fast Primary charged beam particles Detector collimator of fast Detector of neutral secondary particles particles TOF analyzer of secondary ions Projectile charge analyzer after interaction P.R. Goncharov, A.B. Kukushkin, 23rd Meeting of the Atomic and Molecular Data Centres Network, 2-4 November 2015 , IAEA Headquarters, Vienna, Austria
P.N. Lebedev Physics Institute RAS V.P. Shevelko et al. Processes Method Data Publication Verification / Problem Source \ Application Code Multiple A combination Codes: I.Yu. Tolstikhina, ICF driven by heavy Energy losses of ionization of of semiclassical RICODE V.P. Shevelko ion beams, when accelerated ions atoms by highly and quantum Phys. Scr. 90 a particle depend on their charged ions mechanical CAPTURE , (2015) 074033 accelerator complex interaction cross approaches ARSENY, is used with sections with atoms DEPOSIT equipment needed and molecules of V.P. Shevelko et to aim and focus the the residual gas in a Uranium ions al., submitted to beams. wide energy range. stripping in Nucl. Instrum. molecular Meth. Phys. Res. F acility for In heavy-ion hydrogen Sect. B A ntiproton and therapy, the I on R esearch ( FAIR ) creation of the L. Bozyk et al., Multiple Electron in EU and secondary submitted to Losses in Uranium N uclotron-based I on electrons due to Nucl. Instrum. Ion Beams C ollider f A cility multiple ionization Meth. Phys. Res. ( NICA ) in Russia may be an Sect. B important effect. P.R. Goncharov, A.B. Kukushkin, 23rd Meeting of the Atomic and Molecular Data Centres Network, 2-4 November 2015 , IAEA Headquarters, Vienna, Austria
NRC Kurchatov Institute V.S. Lisitsa et al. Processes Method Data Source Publication Verification / Problem \ Code Application Collisional- Thomas-Fermi TFATOM Comparison with Radiation losses A.V. Demura et al. radiative and Brandt- Atoms 3 (2015) (a) first-principle on W in fusion processes in Lundquist 162-181 numerical facilities (ITER et plasmas with model of modeling of, and al.) multielectron collective (b) experimental A.V. Demura et al. ions oscillations of High Energ. database, on Integrated atomic electron Dens. Phys. 15 heavy impurity modeling of density radiation losses fusion (2015) 49-58 experiments A.V. Demura et al. J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 055701 A.V. Demura et al. JETP Lett. 101 (2015) 85-88
Radiative losses of 16 18 20 10 10 10 tungsten plasmas (power 14 10 -30 AIM - ADPAK 10 per one atom/ion, per one plasma electron) 3 versus temperature for Q abs , L Z , W m several density values, -31 CA-LARGE 10 demonstrating transition from Boltzmann equilibrium (straight corona dash-dotted lines) to -32 20 cm -3 10 10 corona limit (solid line). 14 10 18 10 16 10 -33 10 0 1 2 3 4 10 10 10 10 10 T e , eV Universal statistical approach (dashed lines, marked by values of electron density) vs. codes AIM ADPAK D. Post et al. Phys. Plasmas 2 (1995) 2328-2336 K. Asmussen et al. Nucl. Fusion 38 (1998) 967-986 ADPAK H.P. Summers Atomic Data and Analysis Structure User Manual (2007) AIM - averaged ion model - D.E. Post et al. At. Data Nucl. Data Tables 20 (1977) 397-439 CA-LARGE T. Pütterich et al. Nucl. Fusion 50 (2010) 025012 A.V. Demura, M.B. Kadomtsev, V.S. Lisitsa, V.A. Shurygin High Energ. Dens. Phys. 15 (2015) 49-58
2. Use of atomic and molecular data in controlled fusion research P.R. Goncharov, A.B. Kukushkin, 23rd Meeting of the Atomic and Molecular Data Centres Network, 2-4 November 2015 , IAEA Headquarters, Vienna, Austria
NRC Kurchatov Institute A.B. Kukushkin, V.S. Neverov, et al. Problem Task Publication Processes Data Source Data Needs H-alpha (and Divertor Stray V.S. Lisitsa All processes B2-EIRENE Hydrogen isotope Visible Light) Light problem, et al. Atoms 2 with D 2 and D (SOLPS4.3) molecules Diagnostic accuracy (2014) 195-206 simulations of dissociation with in ITER: assessment All processes plasma excited atoms as A.B. Kukushkin “Synthetic (ITER with impurities background products et al. J. Phys.: Diagnostics” Measurement (Be, W, etc.) in divertor+SOL Conf. Ser. 548 for error Requirement in ITER Beryllium hydride (2014) 012012 assessment flow down) molecules V.S. Neverov et EIRENE and al. Plasma simulations of hardware Phys. Rep. 41 neutral D optimization (2015) 103-111 velocity A.B. Kukushkin distribution in et al. 1 st IAEA SOL in ITER TM on Fusion DIVIMP Data Analysis simulations of (2015), impurities submitted to Fusion Sci. Technol. A.B. Kukushkin, V.S. Neverov, et al. (NRC “ Kurchatov Institute”, Moscow, Russia) P.R. Goncharov, A.B. Kukushkin, 23rd Meeting of the Atomic and Molecular Data Centres Network, 2-4 November 2015 , IAEA Headquarters, Vienna, Austria
scenarios “d” (low density) Main chamber chord Possible scenarios “ i ” (high density) layout of 16 observation chords 2D distribution of the Balmer-alpha emissivity* in the SOL and divertor in Fitting the “phantom” experimental signal by solving an ITER, in log-scale. inverse problem for assumed (given) 80% fraction of DSL * SOLPS 4.3 (B2-EIRENE) simulation and 2% fraction of HFS SOL light in the total signal
Recommend
More recommend